Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy
SONG Song-Quan,1,3,*, LIU Jun2, XU Heng-Heng2, ZHANG Qi2, HUANG Hui3, WU Xian-Jin31 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China 3 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province / College of Biological and Food Engineering, Huaihua University, Huaihua 418008, Hunan, China
This study was supported by the National Science and Technology Support Program.2012BAC01B05 the National Natural Science Foundation of China.31371715 the National Natural Science Foundation of China.31640059 the Guangdong Science and Technology Program.2016B030303007
Abstract Seed germination, a key ecological and agronomic trait, is determined by both internal and external cues that regulate the dormancy status and the potential for germination in seeds, and plays a critical role during the subsequent growth, development and production of plants. Dormancy is the temporary failure of seed germination under favorable conditions. Ethylene is a simple gaseous phytohormone with multiple roles in regulation of metabolism at molecular, cellular, and whole plant levels. It influences performance of plants under optimal and stressful environments by interacting with other signaling molecules. In the present paper, we mainly summarize ethylene biosynthesis and signaling, the role of ethylene in seed germination and dormancy release, and the interaction of ethylene with phytohormone abscisic acid and gibberellin, and propose some scientific problems to be required to investigate further in order to provide an idea for explaining the molecular mechanism of seed germination and dormancy regulated by ethylene. Keywords:abscisic acid;biosynthesis and signaling;crosstalk;ethylene;gibberellin;seed germination and dormancy
PDF (1914KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 宋松泉, 刘军, 徐恒恒, 张琪, 黄荟, 伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981. doi:10.3724/SP.J.1006.2019.84175 SONG Song-Quan, LIU Jun, XU Heng-Heng, ZHANG Qi, HUANG Hui, WU Xian-Jin. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy[J]. Acta Crops Sinica, 2019, 45(7): 969-981. doi:10.3724/SP.J.1006.2019.84175
The formation of S-adenosyl methionine (S-AdoMet) from methionine is catalysed by S-AdoMet synthetase at the expense of one molecule of ATP per molecule of S-AdoMet synthesized (1). A rate-limiting step of ethylene synthesis is the conversion of S-AdoMet to ACC by ACC synthase (2). Methylthioadenosine (MTA) is the by-product generated, along with ACC, by ACC synthase. Recycling of MTA back to methionine conserves the methylthio group and is able to maintain a constant concentration of methionine in cells. Malonylation of ACC to malonyl-ACC depletes the ACC pool and reduces ethylene production. ACC oxidase catalyses the final step of ethylene synthesis using ACC as substrate and generates carbon dioxide and cyanide (3). Cyanide is metabolized by β-cyanoalanine synthase to produce non-toxic substances. Transcriptional regulation of both ACC synthase and ACC oxidase by homeotic proteins and developmental and environmental cues is indicated by dashed arrows. From Lin et al. [19]
乙烯由受体蛋白ETR1、ERS1、ETR2、ERS2和EIN4 (绿色表示)感受, 受体是乙烯信号的负调控因子。受体通过它们的GAF结构域(在受体的细胞质区域用五边形表示)与其他的受体相互作用, 并在ER膜中形成更高层次的复合物。铜(一种乙烯结合的辅因子, 红色圆圈)由铜转运体RAN1 (橙色表示)传递给受体。RTE1 (粉红色)与ETR1相联系, 介导受体信号输出。(A)在乙烯缺乏时, 受体激活CTR1 (黄色)。CTR1通过直接磷酸化EIN2的C-末端(蓝色圆圈)使其失活(紫色)。EIN2能够直接与受体的激酶结构域(在受体的细胞质区域在五边形下较大的椭圆)相互作用。EIN2的水平通过26S蛋白酶体(灰色)被F-box蛋白ETP1和ETP2(绿色星状物)负调控。在细胞核中, 转录因子EIN3/EIL1 (红色)通过蛋白酶体被另外2个F-box蛋白EBF1/2(蓝色星状物)降解。在EIN3/EIL1缺乏时, 乙烯反应基因的转录被关闭。(B)在乙烯存在时, 受体与激素结合并失去活性, 依次关闭CTR1。这种失活阻止正调控因子EIN2的磷酸化。EIN2的C-末端被一种未知的机制所剪切, 并移动到细胞核, 在细胞核中使EIN3/EIL1稳定和诱导EBF1/2的降解。转录因子EIN3/EIL1形成二聚体, 激活乙烯靶基因的表达, 包括F-box基因EBF2 (深蓝色卷曲线, 它产生抑制乙烯途径活性的负反馈环)或者转录因子基因ERF1(淡蓝色线, 它依次始启一个转录级联, 导致数百个乙烯调控基因的活化和抑制)。在乙烯反应基因中有受体基因ETR2 (绿色线), 它的mRNA被乙烯上调, 以及被翻译成为一批新的没有与乙烯结合的受体分子; 这些受体分子然后活化负调控因子CTR1, 从而提供了在不添加乙烯的情况下向下调节乙烯信号的手段。途径中的其他调控节点是核糖核酸外切酶EIN5 (淡橙色, 它控制EBF2 的mRNA水平)以及F-box蛋白ETP1和ETP2 (绿色星状物, 在乙烯存在时, 它们被降解, 导致EIN2的稳定)。正箭头和负箭头分别表示激活和下调这个过程。颜色变浅表示的分子(在‘没有乙烯’中的EIN3/EIL1, 或者在‘乙烯’中的ETP1/2和EBF1/2)相应于蛋白酶体介导降解的被标记的不稳定蛋白。卷曲线表示特定的mRNA, 它们的颜色与相应的蛋白质颜色相一致。引自Merchante等[51]。 Fig. 2The current model of the ethylene signaling pathway in Arabidopsis
Ethylene is perceived by the receptor proteins ETR1, ERS1, ETR2, ERS2, and EIN4 (represented in green), the receptors are negative regulators of ethylene signaling. The receptors interact with other receptors and form higher order complexes in the ER membrane through their GAF domains (represented as pentagons in the receptors’ cytosolic domain). Copper (a cofactor for ethylene binding, red circles) is delivered to the receptors by the copper transporter RAN1 (represented in orange). RTE1 (in pink) is associated with ETR1 and mediates the receptor signal output. (A) In the absence of ethylene, the receptors activate CTR1 (in yellow). CTR1 inactivates EIN2 (in purple) by directly phosphorylating (blue circles) its C-terminal end. EIN2 can directly interact with the kinase domain of the receptors (represented as the larger ovals under the pentagons in the cytosolic domain of the receptors). The levels of EIN2 are negatively regulated by the F-box proteins ETP1 and ETP2 (green star) via the 26S proteasome (gray). In the nucleus, the transcription factors EIN3/EIL1 (in red) are being degraded by two other F-box proteins, EBF1/2 (blue star), through the proteasome. In the absence of EIN3/EIL1, transcription of the ethylene response genes is shut off. (B) In the presence of ethylene, the receptors bind the hormone and become inactivated, which in turn, switches off CTR1. This inactivation prevents the phosphorylation of the positive regulator EIN2. The C-terminal end of EIN2 is cleaved off by an unknown mechanism and moves to the nucleus where it stabilizes EIN3/EIL1 and induces degradation of EBF1/2. The transcription factors EIN3/EIL1 dimerize and activate the expression of ethylene target genes, including the F-box gene EBF2 (dark blue curly line) [which generates a negative feedback loop dampening the activity of the ethylene pathway] or the transcription factor gene ERF1 (light blue line) [which, in turn, initiates a transcriptional cascade resulting in the activation and repression of hundreds of ethylene-regulated genes]. Among the ethylene responsive genes the receptor gene is ETR2 (green line), whose mRNA is up-regulated by ethylene and translated into the new batch of ethylene-free receptor molecules which then activate the negative regulator CTR1, thus providing the means of tuning down ethylene signaling in the absence of additional ethylene. Other regulatory nodes in the pathway are the exoribonuclease EIN5 (light orange), which controls the levels of EBF2 mRNA, and the F-box proteins ETP1 and ETP2 (green star) that are degraded in the presence of ethylene leading to the stabilization of EIN2. Positive and negative arrows represent activation and down-regulation processes, respectively. Molecules shown in fading colors (EIN3/EIL1 in ‘no ethylene’, or ETP1/2 and EBF1/2 in ‘ethylene’) correspond to unstable proteins targeted to proteasome-mediated degradation. Curly lines indicate specific mRNAs, with their colors matching that of the corresponding proteins. From Merchante et al.[51]
Table 1 表1 表1乙烯、乙烯利或者1-氨基环丙烷-1-羧酸打破种子休眠的物种(引自Corbuneau et al.[16]) Table 1Plant species whose seed dormancy is broken by ethylene, ethephon, or 1-aminocyclopropane-1-carboxylic acid (From Corbineau et al.[16])
该方案是基于正文中引证的种子对乙烯、脱落酸或者GA响应的遗传分析、芯片数据和生理研究。乙烯通过抑制ABA的合成和促进它的失活或者分解代谢下调ABA的积累, 也负调控ABA信号。ABA通过ACS和ACO的活性抑制乙烯的生物合成。乙烯也增强GA的代谢和信号, 反过来也一样。“→”和“┤”分别表示信号级联的不同元素之间的正、负相互作用。根据Corbineau等[16]重绘。 Fig. 3Interaction among ethylene, abscisic acid, and gibberellin in the regulation of seed germination and dormancy
This scheme is based on genetic analyses, microarray data, and physiological studies on seed responsiveness to ethylene, ABA or GA cited in the text. Ethylene down-regulates ABA accumulation by both inhibiting its synthesis and promoting its inactivation or catabolism, and also negatively regulates ABA signaling. ABA inhibits ethylene biosynthesis through ACS and ACO activities. Ethylene also improves the GA metabolism and signaling, and vice versa. “→” and“ ┤” indicate positive and negative interactions between the different elements of the signaling cascade, respectively. Redrew from Corbineau et al. [16].
Xu HH, LiN, Liu SJ, Wang WQ, Wang WP, ZhangH, Cheng HY, Song SQ . Research progress in seed germination and its control Acta Agric Sin, 2014,40:1141-1156 (in Chinese with English abstract). [本文引用: 2]
ShuK, Liu XD, XieQ, He ZH . Two faces of one seed: hormonal regulation of dormancy and germination , 2016,9:34-45. DOI:10.1016/j.molp.2015.08.010URL [本文引用: 2]
Hoang HH, SechetJ, BaillyC, LeymarieJ, CorbineauF . Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. , 2014,37:1393-1403.
Lee HG, LeeK, Seo PJ . The Arabidopsis MYB96 transcription factors play a role in seed dormancy , 2015,87:371-381. DOI:10.1007/s11103-015-0283-4URL [本文引用: 1]
LinkiesA, Leubner-MetzgerG . Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination , 2012,31:253-270. DOI:10.1007/s00299-011-1180-1URL [本文引用: 4]
MüllerM, Munné-BoschS . Ethylene response factors: a key regulatory hub in hormone and stress signaling , 2015,169:32-41. DOI:10.1104/pp.15.00677URL [本文引用: 2]
Thao NP, KhanM I R, ThuN B A, HoangX L T, AsgherM, KhanN A, TranL S P . Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress , 2015,169:73-84. DOI:10.1104/pp.15.00663URL [本文引用: 1]
Iglesias-FernandezR, MatillaA . Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of , 2010,231:653-664. [本文引用: 3]
YamagamiT, TsuchisakaA, YamadaK, Haddon WF, Harden LA, TheologisA . Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family , 2003,278:49102-49112. DOI:10.1074/jbc.M308297200URL [本文引用: 1]
TsuchisakaA, YuG, JinH, Alonso JM, Ecker JR, ZhangX, GaoS, TheologisA . A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. , 2009,183:979-1003. [本文引用: 2]
Christians MJ, Gingerich DJ, HansenM, Binder BM, Kieber JJ, Vierstra RD . The BTB ubiquitin ligases ETO1, EOL1, and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels , 2009,57:332-345. DOI:10.1111/tpj.2009.57.issue-2URL [本文引用: 1]
Lyzenga WJ, Booth JK, Stone SL . The Arabidopsis RING- type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane- 1-carboxylate synthase 7 , 2012,71:23-34. DOI:10.1111/tpj.2012.71.issue-1URL [本文引用: 1]
KamiyoshiharaY, IwataM, FukayaT, TatsukiM, MoriH . Turnover of LeACS2, a wound-inducible 1-aminocyclopropane- 1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation , 2010,64:140-150. [本文引用: 1]
LudwikowA, CieslaA, Kasprowicz-MaluskiA, MitulaF, TajdelM, GalganskiL, Ziolkowski PA, KubiakP, MaleckA, PiechalakA, SzabatM, GorskaA, DabrowskiM, IbragimowI, SadoqskiJ . Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis , 2014,7:960-967. DOI:10.1093/mp/ssu025URL [本文引用: 1]
Van de PoelB, BulensI, MarkoulaA, HertogM L A T M, DreesenR, WirtzM, VandoninckS, OppermannY, KeulemansJ, HellR, WaelkensE, De Proft MP, SauterM, Nicolai BM, Geeraerd AH . Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening , 2012,160:1498-1514. DOI:10.1104/pp.112.206086URL [本文引用: 1]
Murphy LJ, Robertson KN, Harroun SG, Brosseau CL, Werner-ZwanzigerU, MoilanenJ, Tuononen HM, ClyburneJ A C . A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion , 2014,344:75-78. DOI:10.1126/science.1250808URL [本文引用: 2]
叶永健, 宋松泉 . Fe 2+和CO2对番木瓜ACC氧化酶活性的影响 , 1997,36(2):18-21. [本文引用: 1]
Ye YJ, Song SQ . Effect of Fe 2+ and CO2 on 1-aminocyclopropane-1-carboxylate oxidase from papaya (Carica papaya L.) fruit. Acta Sci Nat Univ Sunyatseni, 1997,36(2):18-21. [本文引用: 1]
Dong JG, Fernandezmaculet JC, Yang SF . Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit , 1992,89:9789-9793. DOI:10.1073/pnas.89.20.9789URL [本文引用: 1]
Song SQ, Ye YJ . Effect of O2, ACC and CO2 concentration on the activity of partially purified ACC oxidase from papaya , 2001,27:387-392. [本文引用: 1]
Hudgins JW, Ralph SG, Franceschi VR, BohlmannJ . Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane- 1-carboxylate oxidase in resin duct and phenolic parenchyma cells , 2006,224:865-877. DOI:10.1007/s00425-006-0274-4URL [本文引用: 1]
RamassamyS, OlmosE, BouzayenM, Pech JC, LatcheA . 1-aminocyclopropane-1-carboxylate oxidase of apple fruitis periplasmic , 1998,49:1909-1915. [本文引用: 1]
De PaepeA, VuylstekeM, vanHummelen P, ZabeauM, van Der StaetenD . Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis , 2004,39:537-559. DOI:10.1111/tpj.2004.39.issue-4URL [本文引用: 1]
Van de PoelB, BulensI, HertogM L A T M, NicolaiB, GeeraerdA . A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. , 2014,202:952-963. [本文引用: 1]
Binder BM, ChangC, Schaller GE . Perception of ethylene by plants-ethylene receptors , 2012,44:117-145. [本文引用: 2]
Stepanova AN, Alonso JM . Ethylene signaling and response: where different regulatory modules meet , 2009,12:548-555. DOI:10.1016/j.pbi.2009.07.009URL [本文引用: 4]
GaoZ, Wen CK, Binder BM, Chen YF, ChangJ, Chiang YH, Kerris RJ, ChangC, Schaller GE . Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis , 2008,283:23801-23810. DOI:10.1074/jbc.M800641200URL [本文引用: 1]
HirayamaT, Kieber JJ, HirayamaN, KoganM, GuzmanP, NourizadehS, Alonso JM, Dailey WP, DancisA, Ecker JR . RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis , 1999,97:383-393. DOI:10.1016/S0092-8674(00)80747-3URL [本文引用: 2]
Binder BM, Rodriguez FI, Bleecker AB . The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis , 2010,285:37263-37270. DOI:10.1074/jbc.M110.170027URL [本文引用: 1]
Resnick JS, Wen CK, Shockey JA, ChangC . REVERSION-TO ETHYLENE SENSITIVITY 1, a conserved gene that regulates ethylene receptor function in Arabidopsis , 2006,103:7917-7922. DOI:10.1073/pnas.0602239103URL [本文引用: 1]
Dong CH, RivarolaM, Resnick JS, Maggin BD, ChangC . Subcellular colocalization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling , 2008,53:275-286. [本文引用: 1]
Resnick JS, RivarolaM, ChangC . Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis , 2008,56:423-431. DOI:10.1111/tpj.2008.56.issue-3URL [本文引用: 1]
MayerhoferH, PanneerselvamS, Mueller-DieckmannJ . Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. , 2012,415:768-779. [本文引用: 1]
Alonso JM, HirayamaT, RomanG, NourizadehS, Ecker JR . EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis , 1999,284:2148-2152. DOI:10.1126/science.284.5423.2148URL [本文引用: 1]
WenX, ZhangC, JiY, ZhaoQ, HeW, AnF, JiangL, GuoH . Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus , 2012,22:1613-1616. DOI:10.1038/cr.2012.145 [本文引用: 3]
Cho YH, LeeS, Yoo SD . EIN2 and EIN3 in ethylene signaling , 2012,44:169-187. [本文引用: 1]
Bisson M MA, GrothG . New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2 , 2010,3:882-889. DOI:10.1093/mp/ssq036URL [本文引用: 1]
AnF, ZhaoQ, JiY, LiW, JiangZ, YuX, ZhangC, HanY, HeW, LiuY, ZhangS, Ecker JR, GuoH . Ethylene-induced stabilization of ETHYLENE INSENSITIVE 3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis , 2010,22:2384-2401. DOI:10.1105/tpc.110.076588URL [本文引用: 2]
JuC, Yoon GM, Shemansky JM, Lin DY, Ying ZI, ChangJ, Garrett WM, KessenbrockM, GrothG, Tucker ML, CooperB, Kieber JJ, ChangC . CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis , 2012,109:19486-19491. DOI:10.1073/pnas.1214848109URL [本文引用: 4]
QiaoH, ShenZ, Huang SC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR . Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas , 2012,338:390-393. DOI:10.1126/science.1225974URL [本文引用: 2]
JiY, GuoH . From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling , 2013,6:11-14. DOI:10.1093/mp/sss150URL [本文引用: 1]
LiJ, LiZ, TangL, YangY, ZouineM, BouzayenM . A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato , 2012,63:427-439. DOI:10.1093/jxb/err289URL [本文引用: 1]
Chang KN, ZhongS, Weirauch MT, HonG, PelizzolaM, LiH, HuangS S C, SchmitzR J, UrichM A, KuoD, NeryJ R, QiaoH, YangA, JamaliA, ChenH, IdekerT, RenB, Bar-JosephZ, HughesT R, EckerJ R . Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis , 2013,2:e00675. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.7554/eLife.00675. URL [本文引用: 1]
Chen YF, Shakeel SN, BowersJ, Zhao XC, EtheridgeN, Schaller GE . Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis , 2007,282:24752-24758. DOI:10.1074/jbc.M704419200URL [本文引用: 1]
Gagne JM, SmalleJ, Gingerich DJ, Walker JM, Yoo SD, YanagisawaS, Vierstra RD . Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation , 2004,101:6803-6808. DOI:10.1073/pnas.0401698101URL [本文引用: 2]
QiaoH, Chang KN, YazakiJ, Ecker JR . Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis , 2009,23:512-521. DOI:10.1101/gad.1765709URL [本文引用: 3]
PotuschakT, LechnerE, ParmentierY, YanagisawaS, GravaS, KonczC, GenschikP . EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2 , 2003,115:679-689. DOI:10.1016/S0092-8674(03)00968-1URL [本文引用: 1]
KonishiM, YanagisawaS . Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3 , 2008,55:821-831. DOI:10.1111/tpj.2008.55.issue-5URL [本文引用: 1]
Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ . Ethylene receptor degradation controls the timing of ripening in tomato fruit , 2007,51:458-467. DOI:10.1111/j.1365-313X.2007.03170.xURL [本文引用: 1]
Fu JR, Yang SF . Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1- carboxylic acid during germination , 1983,2:185-192. DOI:10.1007/BF02042247URL [本文引用: 1]
SiriwitayawanG, Geneve RL, Downie AB . Seed germination of ethylene perception mutants of tomato and Arabidopsis , 2003,13:303-314. DOI:10.1079/SSR2003147URL [本文引用: 1]
K?pczyńskiJ, SznigirP . Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. , 2014,36:1463-1472. [本文引用: 3]
Van dePoel, SmetD, Van Der StraetenD . Ethylene and hormonal cross talk in vegetative growth and development , 2015,169:61-72. DOI:10.1104/pp.15.00724URL [本文引用: 1]
Wood LA, Kester ST, Geneve RL . The physiological basis for ethylene-induced dormancy release in three Echinacea species with special reference to the influence of the integumentary tapetum. , 2013: 156:63-72. [本文引用: 1]
LinY, YangL, PaulM, ZuY, TangZ . Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium niroprusside , 2013,73:211-218. DOI:10.1016/j.plaphy.2013.10.003URL [本文引用: 1]
Silva PO, Medina EF, Barros RS, Ribeiro DM . Germination of salt-stressed seeds as related to ethylene biosynthesis ability in three Stylosanthes species. , 2014,171:14-22. [本文引用: 1]
SinskaI . Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos , 1989,64:39-44. DOI:10.1016/0168-9452(89)90149-0URL [本文引用: 1]
Ribeiro DM, Barros RS . Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis. , 2006,16:37-45. [本文引用: 1]
GniazdowskaA, KrasuskaU, BogatekR . Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway , 2010,232:1397-1407. DOI:10.1007/s00425-010-1262-2URL [本文引用: 1]
ArgyrisJ, DahalP, HayashiE, Still DW, Bradford KJ . Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes , 2008,148:926-947. DOI:10.1104/pp.108.125807URL [本文引用: 2]
HermannK, MeinhardJ, DobrevP, LinkiesA, PesekB, HessB, Machá?ková IM, FischerU, Leubner-MetzgerG . 1-Amynocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. , 2007,58:3047-3060. [本文引用: 1]
KrasuskaU, CiackaK, DebskaK, BogatekR, GniazdowskaA . Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. , 2014,171:1132-1141. [本文引用: 1]
OraczK, El-Maarouf-BouteauH, BogatekR, CorbineauF, BaillyC . Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway , 2008,59:2241-2251. DOI:10.1093/jxb/ern089URL [本文引用: 2]
Chiwocha S DS, Cutler AJ, Abrams SR, Ambrose SJ, YangJ, Kermode AR . The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during main tenance of seed dormancy, moist-chilling and germination. , 2005,42:35-48. [本文引用: 5]
SubbiahV, Reddy KJ . Interactions between ethylene, abscisisc acid and cytokinin during germination and seedling establishment in Arabidopsis , 2010,35:451-458. DOI:10.1007/s12038-010-0050-2URL [本文引用: 3]
Jimenez JA, RodriguezD, Calvo AP, Mortensen LC, NicolasG, NicolasC . Expression of a transcription factor (FsERF1) involved in ethylene signaling during the breaking of dormancy in Fagus sylvatica seeds. , 2005,125:373-380. [本文引用: 1]
PirrelloJ, Jaimes-MirandaF, Sanchez-BallestaM T, TournierB, Khalil-AhmadQ, RegadF, LatchéA, PechJ C, BouzayenM . Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination , 2006,47:1195-1205. DOI:10.1093/pcp/pcj084URL [本文引用: 1]
Cadman C SC, Toorop PE, Hilhorst H WM, Finch-Savage WE . Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism , 2006,46:805-822. DOI:10.1111/tpj.2006.46.issue-5URL [本文引用: 1]
LinkiesA, MüllerK, MorrisK, Ture?kováV, WenkM, CadmanC S C, CorbineauF, StrnadM, LynnJ R, Finch-SavageW E, Leubner-MetzgerG . Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. , 2009,21:3803-3822. [本文引用: 6]
Dong TT, Tong JH, Xiao LT, Cheng HY, Song SQ . Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination , 2012,66:191-202. DOI:10.1007/s10725-011-9643-5URL [本文引用: 1]
DongZ, YuY, LiS, WangJ, TangS, HuangR . Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. , 2016,9:126-135. [本文引用: 2]
PenfieldS, LiY, Gilday AD, GrahamS, Graham IA . Arabidopsis ABA INSENSITIVE 4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm , 2006,18:1887-1899. DOI:10.1105/tpc.106.041277URL [本文引用: 2]
Cheng WH, Chiang MH, Hwang SG, Lin PC . Antagonism between abscisic acid and ethylene in Arabidopsis acts inparallel with the reciprocal regulation of their metabolism and signaling pathways , 2009,71:61-80. DOI:10.1007/s11103-009-9509-7URL [本文引用: 3]
KuceraB, Cohn MA, Leubner-MetzgerG . Plant hormone interactions during seed dormancy release and germination , 2005,15:281-307. DOI:10.1079/SSR2005218URL [本文引用: 1]
BeaudoinN, SerizetC, GostiF, GiraudatJ . Interactions between abscisic acid and ethylene signaling cascades , 2000,12:1103-1115. DOI:10.1105/tpc.12.7.1103URL [本文引用: 1]
Alonso-RamirezA, RodriguezD, ReyesD, Jimenez JA, NicolasG, NicolasC . Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. , 2011,234:589-597. [本文引用: 1]
Calvo AP, NicolasC, LorenzoO, NicolasG, RodriguezD . Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. , 2004,23:44-53. [本文引用: 2]
OgawaM, HanadaA, YamauchiY, KuwaharaA, KamiyaY, YamaguchiS . Gibberellin biosynthesis and response during Arabidopsis seed germination , 2003,15:1591-1604. DOI:10.1105/tpc.011650URL [本文引用: 2]
Calvo AP, NicolasC, NicolasG, RodriguezD . Evidence of a crosstalk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. , 2004,120:623-630. [本文引用: 2]
DillA, Thomas SG, Steber CM, Sun TP . The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation , 2004,16:1392-1405. DOI:10.1105/tpc.020958URL [本文引用: 1]
AchardP, BaghourM, ChappleA, HeddenP, VanDer Straeten D, GenschikP, MoritzT, HarberdN P . The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes , 2007,104:6484-6489. DOI:10.1073/pnas.0610717104URL [本文引用: 1]
PiskurewiczU, JikumaruY, KinoshitaN, NambaraE, KamiyaY, Lopez-MolinaL . The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity , 2008,20:2729-2745. DOI:10.1105/tpc.108.061515URL [本文引用: 1]
NambaraE, OkamotoM, TatematsuK, YanoR, SeoM, KamiyaY . Abscisic acid and the control of seed dormancy and germination , 2010,20:55-67. DOI:10.1017/S0960258510000012URL [本文引用: 1]
Liu SJ, Song SH, Wang WQ, Song SQ . De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing , 2015,96:154-162. DOI:10.1016/j.plaphy.2015.07.020URL [本文引用: 1]
Wang WQ, Song BY, Deng ZJ, WangY, Liu SJ, M?ller IM, Song SQ . Proteomic analysis of Lactuca sativa seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by PEG fractionation. , 2015,167:1332-1350. [本文引用: 1]
Xu HH, Liu SJ, Song SH, Wang WQ, M?ller IM, Song SQ . Proteome changes associated with dormancy release of Dongxiang wild rice seeds , 2016,206:68-86. DOI:10.1016/j.jplph.2016.08.016URL [本文引用: 1]