删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

乙烯的生物合成与信号及其对种子萌发和休眠的调控

本站小编 Free考研考试/2021-12-26

闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓梺顓ㄧ畱閸旀帗绻涘顔荤盎缂佺媴缍侀弻銊╁籍閸ヮ煈妫勯梺閫炲苯澧繛纭风節瀵濡搁埡浣虹潉闂佺ǹ鏈粙鎺楁偟椤忓牊鈷戠紓浣贯缚缁犳岸鏌涢埡鍌滃⒌妤犵偛鐗撴俊鎼佸Ψ椤旇棄鐦滈梺鑽ゅТ濞测晛顕i幘瀵哥彾闁哄洢鍨洪埛鎺懨归敐鍕劅闁衡偓閻楀牏绠鹃柛娑卞枟缁€瀣殽閻愭潙鐏寸€规洘鍎奸ˇ鎾煛閸☆參妾柟渚垮妼椤啰鎷犻煫顓烆棜濠碉紕鍋戦崐鎴﹀垂閸濆嫀娑㈠礃閵娧勬闂佸憡顨堥崐锝夊籍閸繄顦ㄩ梺闈浨归崕鎶筋敊閸ヮ剚鈷掗柛灞捐壘閳ь剚鎮傚畷鎰槹鎼达絿鐒兼繛鎾村焹閸嬫挾鈧娲忛崕鎶藉焵椤掑﹦绉靛ù婊冪埣閹垽宕卞Ο璇插伎濠碉紕鍋犻褎绂嶆ィ鍐╁€甸悷娆忓婢跺嫰鏌涢妸銉у煟闁靛棔绶氬鎾閻欌偓濞煎﹪姊洪棃娑氱畾闁告挻绻堥、娆撳即閵忊檧鎷绘繛鎾村焹閸嬫挻绻涙担鍐叉瘽閵娾晛鐒垫い鎺嗗亾闁宠鍨块崹楣冩惞椤愩垺鐏庨梻浣虹《閺傚倿宕归挊澶樺殨妞ゆ洍鍋撶€规洖銈搁幃銏ゅ传閸曨偆顓奸梻鍌氬€烽懗鍫曘€佹繝鍥风稏濠㈣埖鍔曠粈澶愭煛閸ャ儱鐏柛搴$У缁绘稑顔忛鑽ゅ嚬闂佺粯鎸鹃崰鏍蓟閿濆绫嶉柛顐亝椤ユ牜绱撴担鍓叉Ч婵$偘绮欏濠氭偄绾拌鲸鏅╅梺鍏肩ゴ閺呮繃顨欓梺璇叉唉椤煤濮椻偓瀹曟洘绺介弶鍡楁喘瀵濡烽敂鎯у笚闂傚倷绀侀悘婵嬵敄閸℃稑鐓曢柟閭﹀枤绾捐偐绱撴担璐細缂佺姷鍋ら弻娑㈠煘閹傚濠碉紕鍋戦崐鏍暜閹烘柡鍋撳鐓庡⒋闁诡喚鍋涚叅妞ゅ繐鎳愰崢閬嶆⒑瑜版帒浜伴柛銊ㄤ含濞戠敻宕奸弴鐔哄幗濡炪倖鎸鹃崳銉モ枔閺冨牊鐓冮悷娆忓閻忔挳鏌涢埞鍨姦鐎规洖宕灃闁告剬鍐嚙缂傚倸鍊烽懗鍫曟惞鎼淬劌鍌ㄥ┑鍌氭啞閸嬪鏌i幘铏崳闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖濡ゅ懏顥堟繛鎴炵懄閸犳劙姊虹涵鍛彧缂佽鐗嗛~蹇撁洪鍛姷闂佺粯鍔樼亸顏嗏偓姘緲椤儻顦抽柟鍛婂▕瀵寮撮姀鐘茶€垮┑掳鍊愰崑鎾绘煃瑜滈崜娆忈缚閿熺姷宓佸┑鐘叉处閸婄兘鏌涘┑鍡楃弸闁靛ň鏅滈悡銉╂煛閸ヮ煈娈斿ù婊堢畺濮婃椽宕ㄦ繝鍐弳闂佺娅曢敋妞ゎ偄绻愮叅妞ゅ繐瀚畵宥咁渻閵堝棙灏甸柛瀣戠粩鐔煎即閻旇櫣鐦堥梺鍐茬殱閸嬫捇鏌涢幇闈涙灈鐎殿喕鍗抽幃妤冩喆閸曨剛顦ㄩ梺鎼炲妼濞硷繝鎮伴鍢夌喓浜搁弽褌澹曞┑鐐村灦椤忣亪顢旈崼顐f櫅闂佽鍎虫晶搴e閽樺褰掓晲閸涱喛纭€闂佸疇妫勯ˇ浼村Φ閸曨垰绠f繝闈涙祩濡倗绱撴担鎴掑惈闁稿鍋熼幑銏犫攽鐎n亞顦ㄩ悷婊冪箳缁顫濋澶嬪瘜闂侀潧鐗嗗Λ妤佹叏閸岀偞鐓曞┑鐘插暞缁€瀣煏閸℃鈧湱缂撴禒瀣窛濠电姴瀚獮鍫ユ⒒娴e摜鏋冩俊妞煎妿濞嗐垽濡舵径濠勵槷闂佺粯妫冮弲鑼崲閸℃稒鐓曟繛鍡楁禋濡茬ǹ鈹戦鑲┬ら柍褜鍓濋~澶娒洪弽顐ょ濠电姴娲㈤埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣告啞濞诧箓宕滃▎鎾崇哗妞ゆ挾鍋愰弨浠嬫煟濡櫣浠涢柡鍡忔櫊閺屾稓鈧綆鍋嗛埥澶愭懚閻愬绠鹃柛鈩兩戠亸顓犵磼閻樺啿顥嬬紒杈ㄥ笧閳ь剨缍嗘禍鐐差潩閵娾晜鐓涢悗锝庝簽鏁堥梺鍝勮閸旀垿骞冮姀銈呬紶闁告洘鍩婄紞渚€寮诲☉姘e亾閿濆懎顣抽柟顔笺偢閺岀喖鎳犻銏犵秺椤㈡ɑ绺界粙璺ㄥ€為梺鎸庣箓閹冲秵绔熼弴鐐╂斀妞ゆ梻绮ㄧ紓姘舵煕濡姴娲ㄥ畵浣规叏濡炶浜鹃梺鍝勮閸婃洜鍙呭銈呯箰閸燁垶宕板顒夋富闁靛牆鍟悘顏堟煟閻斿弶娅婃鐐插暙閳诲酣骞欓崘鈺傛珜濠电偠鎻徊鎸庣仚婵犳鍠栭柊锝咁潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹憴鍕偞闁告挻绻勭划顓㈡偄閼茬儤妫冨畷銊╊敇閻愯弓鎲鹃梻鍌欒兌缁垶骞愰崫銉㈠亾閸偄娴€规洜鏁诲鎾閿涘嫬骞堥柣鐔哥矊闁帮綁濡撮崘顔煎耿婵炴垶鐟ユ禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁告捁椴哥换娑㈠醇閻旀帗鍨挎俊鐢稿礋椤栨稒娅嗘繝闈涘€搁幉锟狀敁瀹ュ洨纾藉ù锝堟鐢稓绱掔拠鑼ⅵ鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繑鎸抽弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏灩閻掓椽鏌涢幇鍏哥凹闁革綆鍙冨娲箰鎼达絺妲堢紓浣虹帛閿氭い顐㈢箰鐓ゆい蹇撳椤︻參姊洪懖鈹炬嫛闁告挻鐟ч弫顕€濡烽埡鍌楁嫼闂佸憡绺块崕杈ㄧ墡闂備胶绮〃鍡欏垝閹炬剚鍤曟い鎰跺瘜閺佸鏌嶈閸撶喖鎮伴鑺ュ劅闁靛⿵绠戝▓鐔兼⒑闂堟侗妲堕柛搴濆嵆瀹曠娀寮介鐔叉嫽婵炶揪绲介幗婊呯矓濞差亝鐓曢悗锝庝悍闊剛鈧娲樼划宀勫煡婢跺⿴娼╅弶鍫氭櫇閸樼娀姊绘担铏瑰笡闁搞劌澧庡﹢浣虹磽娴g瓔鍤欐俊顐g箞瀵鎮㈤搹鍦紲濠碘槅鍨靛▍锝夋偡閵娿儺娓婚柕鍫濇噺缁傚鏌涚€n亷韬€殿喖顭烽幃銏ゅ礈閸欏-褔鏌熼懖鈺勊夐悗娈垮墴閺佹劖寰勭€n亖鍋撻悽鍛婄厽闁靛繈鍊栧☉褔鎮介姘卞煟闁哄苯绉堕幏鐘诲蓟閵夈儱鍙婃俊銈囧Х閸嬫盯顢栨径鎰畺妞ゅ繐鐗嗗婵囥亜閺嶃劍鐨戦柛婵撴嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墕閳规垿鎮欓崣澶樻!闂佹悶鍔庨崰鏍х暦閹达箑绠婚柤鎼佹涧閺嬪倿姊洪崨濠冨闁告挻鐩弫宥咁潨閳ь剙顫忛搹鍦煓闁圭ǹ瀛╁畷鎶芥⒑鏉炴壆顦︽い顓犲厴閹即顢氶埀顒€鐣峰鈧崺锟犲礃閻愵剛銈梻浣筋嚙閸戠晫绱為崱娑樼;闁圭儤鍤﹀☉銏犵闁靛ǹ鍨洪弬鈧梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸濄儲宕叉慨妞诲亾鐎殿喛顕ч埥澶愬閻橀潧濮堕梻浣告啞閸斿繘寮插┑瀣庡洭濡歌绾捐棄霉閿濆洦鐒块柛蹇撹嫰椤儻顦虫い銊ワ攻娣囧﹪鎮界粙璺槹濡炪倖鐗徊楣冨疾濠靛鈷戦梻鍫熺〒缁犳岸鏌¢崨顔炬创鐎规洘绮撻弻鍡楊吋閸″繑瀚奸梻浣告贡鏋繛瀵稿厴閸╁﹪寮撮姀锛勫幈闂佸搫鍟犻崑鎾绘煟閻斿弶娅婇柟顔诲嵆椤㈡瑩鏌ㄩ姘闂佹寧绻傜花鑲╄姳閹绢喗鐓涢悗锝庝邯閸欏嫰鏌熼鏂よ€块柟顔界懇瀵爼骞嬮悩鍗炴瀳婵犵數濮伴崹濂革綖婢跺⊕鍝勎熼崗鐓庡簥濠电偞鍨堕悷锔剧礊閸ヮ剚鐓曢柟鐐殔鐎氼剚绂掕ぐ鎺撯拺闁告繂瀚烽崕娑樏瑰⿰鍛槐闁糕斁鍋撳銈嗗笂缁讹繝宕箛娑欑厱闁绘ê纾晶鐢告煙椤旂煫顏堝煘閹寸姭鍋撻敐搴濈敖闁告ɑ鎸冲铏规兜閸涱喖娑х紓浣哄У閸ㄨ绔熼弴銏犵闁兼祴鏅濋鏇㈡⒑绾懏褰х紓宥勭窔瀹曨偄煤椤忓懐鍘介梺鎸庣箓濞诧箑鈻嶉弴鐘电<閺夊牄鍔嶇亸浼存煙瀹勭増鍣烘い锔惧閹棃濡堕崶鈺佺倞闂傚倸鍊烽懗鑸电仚濡炪倖鍨甸幊姗€寮崘顔嘉у鑸瞪戦弲顏堟⒑閹稿海绠撴い锔跨矙瀵偊宕卞☉娆戝帗閻熸粍绮撳畷婊堟偄閻撳孩妲梺闈涚箚閸撴繈宕曢悢鍏肩厓闂佹鍨版禍楣冩⒑閸濆嫷鍎忛梺甯秮瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺濇晛閻忕偛褰炵换鍡涙煕濞嗗浚妲归悘蹇ラ檮閹便劍绻濋崟顓炵闂佺懓鍢查幊妯虹暦閵婏妇绡€闁稿本绋掗悾濂告⒒閸屾瑦绁扮€规洜鏁诲畷浼村幢濞戞ḿ锛熼梺姹囧灮鏋柡瀣╃窔閺屾盯骞囬棃娑欑亪闁搞儲鎸冲娲川婵犲嫮鐒肩紓浣插亾濞撴埃鍋撶€殿喗鐓¢幃鈺佺暦閸モ晝妲囬梻浣圭湽閸ㄨ棄岣胯閻楀孩绻濆▓鍨灍閼垦囨煕閺傝法鐒搁柟顕€绠栧畷褰掝敃閵堝洦鍤岄梻渚€鈧偛鑻晶瀛橆殽閻愭彃鏆欓摶鏍煕濞戝崬娅樻俊顐㈠暙閳规垿鎮欓弶鎴犱桓闂佽崵鍠嗛崕闈涱嚕閹惰棄閱囬柕澶涜吂閹疯櫣绱撴笟鍥х仭婵炲弶锚閳诲秹宕ㄧ€涙ḿ鍘辨繝鐢靛Т閸熶即骞楅崘顔界厽闊洦鎼╅崕鏃€鎱ㄦ繝鍛仩缂佽鲸甯掗~婊堝幢濡吋娈介梻鍌欒兌缁垶銆冮崼銉ョ;闁靛牆鎳愰弳锔戒繆閵堝懏濯奸柡浣告閺屾稓浠﹂崜褏鐓傞梺鎸庣⊕缁捇寮婚埄鍐ㄧ窞濠电姴瀚。鍫曟⒑閸涘﹥鐓ユ繛鎾棑閸掓帗绻濆顒傤啋缂傚倷鐒﹀玻鍧楀储閹剧粯鈷戦柤鎭掑剭椤忓煻鍥寠婢光晝鍠栭崺鈧い鎺戝閳锋垿鎮归崶锝傚亾閾忣偆浜炵紓鍌欑贰閸犳鎮烽妷鈺傚仼闁汇値鍨禍褰掓煙閻戞ḿ绠栭柡鍛箞濮婃椽妫冨☉姘暫缂備胶绮敮锟犲箚瀹€鍕櫢闁跨噦鎷�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮甸妵鍕即濡も偓娴滈箖姊洪崫鍕拱缂佸甯為幑銏犫攽鐎n亞顦板銈嗗坊閸嬫挻绻涢崼婵堢劯闁哄睙鍥ㄥ殥闁靛牆鎳嶅Σ鎰版⒑閸濆嫭婀版繛鑼枎閻g兘鎮℃惔妯绘杸闂佹悶鍎滅仦鎷樼喐绻濋悽闈浶fい鏃€鐗犲畷瑙勫閺夋嚦褔鏌熼梻瀵割槮闁藉啰鍠栭弻銊モ攽閸♀晜笑缂備胶濯寸紞渚€寮婚敐鍫㈢杸闁哄啠鍋撻柕鍥╁枎闇夋繝濠傚缁犳ḿ绱掗纰卞剰妞ゆ挸鍚嬪鍕節閸パ勬毆闂傚倷绀侀幖顐⒚洪妸鈺佺獥闁规崘顕ч崒銊╂煙闂傚鍔嶉柍閿嬪灴閺屾稑鈽夊鍫熸暰缂備讲鍋撻悗锝庡亞缁犳儳霉閿濆懎鏆辨繛璇х畵瀹曟劙宕奸弴鐔哄弳濠电娀娼уΛ娆撍夐悩鐢电<闁抽敮鍋撻柛瀣崌濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼骞橀鐣屽幈闂佸疇妗ㄧ粈渚€顢旈鐘亾鐟欏嫭绀冨畝锝呮健楠炴垿宕熼姣尖晝鎲歌箛娑樺偍妞ゆ巻鍋撻柍瑙勫灴閹晛鈻撻幐搴㈢槣婵犵鍓濊ぐ鍐箠濡櫣鏆︾憸鐗堝笚椤ュ牊绻涢幋鐐殿暡婵炲牓绠栧濠氬磼濮樺崬顤€婵炴挻纰嶉〃濠傜暦椤栫偛宸濇い鏂垮⒔閻﹀牓姊婚崒姘卞缂佸鎸婚弲鍫曞閵忋垺锛忛梺纭咁潐閸旀牠藟婢舵劖顥嗗鑸靛姈閻撱儲绻濋棃娑欘棡妞ゆ洘姘ㄩ幉鎼佹偋閸繄鐟ㄥ┑顔款潐閻擄繝寮婚敓鐘茬闁靛ě鍐炬澑闂備胶绮幐鎼佸疮娴兼潙绠熺紒瀣氨閸亪鏌涢锝囩畼妞は佸啠鏀介柣鎰綑閻忥妇鐥弶璺ㄐфい銏℃礋閹崇偤濡烽敃鈧鍨攽閳藉棗鐏ユ繛澶嬫礋瀹曞ジ顢旈崼鐔哄帗閻熸粍绮撳畷婊冣枎閹惧磭锛欓梺绉嗗嫷娈旂紒鐘靛█閺岋綁骞囬浣瑰創闁哥儐鍨跺娲箰鎼淬垻锛曢梺绋款儐閹瑰洭寮诲☉銏犳闁圭ǹ楠稿▓妤€鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗姂閸ㄧ顣介梻鍌氬€风粈渚€骞楀⿰鍫濈獥閹肩补妾紓姘舵煥閻斿搫孝缂佺姵鐗犻弻銊╂偄閸濆嫅銏ゆ煕濡や礁鈻曢柡宀嬬秮楠炲洭顢楅崒鍌︾秮閺岋綁鍩℃繝鍌滀桓濡ょ姷鍋涢崯鎶剿囬崷顓涘亾鐟欏嫭绀€闁靛牊鎮傞妴浣肝旈崨顓犲姦濡炪倖甯掔€氼剟鎯屽Δ鍛厸闁搞儮鏅涘暩缂佺偓宕樺Λ鍕箒闂佹寧绻傜€氼噣鎯屽▎鎾寸厱婵犻潧锕ラ鐘电磼鏉堛劌绗ч柟椋庡█楠炴捇骞掗幘鎼敳闁诲骸鍘滈崑鎾绘煥濠靛棛澧涚痪顓炵埣閺岀喐顦版惔鈾€鏋呴悗瑙勬穿缂嶄礁鐣烽幒鎴斿牚闁告劏鏅濇禍鏍磽閸屾瑦绁板鏉戞憸閺侇噣骞掗弴鐘辫埅闂傚倷鑳剁划顖炲垂闂堟耽娲Ω閳哄倸浠奸柡澶婄墑閸斿﹥绂嶅⿰鍕╀簻闁圭虎鍨版晶鑼棯椤撶偟鍩i柡宀€鍠栭幃鐑藉级濞嗗彞绱旈梻浣告贡閸樠呯礊婵犲倻鏆︽繝濠傜墕缁犳盯鏌涢幘鑼跺厡闁挎稓鍠撶槐鎾存媴娴犲鎽甸柣銏╁灲缁绘繂鐣风憴鍕╁亝闁告劑鍔庨ˇ銊╂倵閻熸澘顥忛柛鐘虫礈濡叉劙寮崼鐔哄幗闁瑰吋鐣崺鍕疮韫囨稒鐓曢柨婵嗛濞呭秶鈧娲橀崹鍨暦閻旂⒈鏁嶆慨妯哄船楠炴帡姊洪悷鏉挎倯闁伙綆浜畷婵嗙暆閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭⒑鐟欏嫬绀冩繛澶嬬☉閺嗏晠姊绘担鍝ユ瀮妞ゆ泦鍥ㄥ剹闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓熼柣鏃傚帶娴滀即鏌涢妶鍜佸剳缂佽鲸鎸婚幏鍛村礈閹绘帒澹夐梻浣规偠閸斿本鏅舵惔锝囩=闁规儳顕々鐑芥倵閿濆簼绨介柣顐㈠濮婅櫣绮欓幐搴㈡嫳缂備緡鍠栭懟顖炴偩閻戣棄唯闁冲搫鍊婚崢浠嬫煙閸忚偐鏆橀柛銊ヮ煼閸╁﹪寮撮悙鍨畷闂佹寧绻傞幊蹇涘磻閵夆晜鐓曢柍鐟扮仢閻忚尙鈧鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犲搫鈹戦悩鎰佸晱闁哥姵顨婇弫鍐煛閸涱厾顦┑顔角归鎰礊閺嶃劎绡€闁哄洨鍋涢弳鐐电磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿濠电姷鏁搁崑娑㈠触鐎n喗鍋¢柍杞拌兌閺嗭箓鏌曟竟顖楀亾闁稿鎹囬弫鎰償閳╁啰浜堕梻浣规偠閸婃洟鎳熼婵堜簷闂備焦瀵х换鍌炲箠鎼淬劌姹叉繛鍡樺灩绾惧ジ鏌e鈧ḿ褔寮稿☉銏$厸鐎光偓閳ь剟宕伴弽顓犲祦闁糕剝绋掗崑瀣煕椤愵偄浜濇い銉ヮ樀濮婂宕掑▎鎰偘闂佽法鍠嗛崕闈涚暦閹邦兘鏀介悗锝庝海閹芥洖鈹戦悙鏉戠仧闁搞劎鎳撻弫顕€姊绘担鐑樺殌闁宦板妿閹广垽宕掗悙鍙夎緢闂侀潧绶垫0浣虹泿闂備礁鎼崐褰掝敄濞嗗精锝夊箹娴e湱鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍鍛存婢舵劖鍊甸柨婵嗛娴滃墽绱掓潏銊ュ摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦归柟顔ㄥ洤骞㈡繛鎴炨缚閻ゅ洭鏌熼崗鑲╂殬闁告柨鐭傚畷娆撴偐瀹曞洨顔曢梺绯曞墲钃遍悘蹇庡嵆閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹤鐣烽崼鏇熸櫜闁稿本鐭竟鏇㈡⒑閹勭闁稿妫欑粋宥夊冀椤撶啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厸閻忕偠顕ф俊鑺ャ亜閵婏絽鍔︽鐐寸墬閹峰懘宕妷銉ョ闂傚倷娴囬~澶婄暦濮椻偓椤㈡俺顦寸紒顔碱煼閺佹劖寰勭€n剙寮抽梻浣告惈閸燁偊宕愭繝姘闁稿本绋掗崣蹇撯攽閻樻彃鈧綊宕戦妷锔藉弿濠电姴鍟妵婵嬫煛鐏炶姤鍤囬柟顔界懇閹崇姷鎹勬笟顖欑磾婵犵數濮幏鍐沪閼恒儳褰庨柣搴㈩問閸n噣宕戞繝鍌滄殾濠靛倻枪鍞梺鎸庢⒐閸庢娊鐛崼銉︹拺閻犲洩灏欑粻鎶芥煕鐎n偆銆掗柡渚囧櫍瀹曨偊宕熼崹顐㈠厞闂佽崵濞€缂傛艾鈻嶉敐澶嬫櫖婵炴垯鍨洪埛鎴︽煟閻斿憡绶查柍閿嬫⒒缁辨帡顢氶崨顓犱桓閻庢鍠楅悡锟犵嵁閺嶃劍濯撮柛锔诲幖瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷
宋松泉,1,3,*, 刘军2, 徐恒恒2, 张琪2, 黄荟3, 伍贤进31 中国科学院植物研究所, 北京100093
2 广东省农业科学院农业生物基因研究中心, 广东广州 510640
3 怀化学院民族药用植物资源研究与利用湖南省重点实验室 / 生物与食品工程学院, 湖南怀化 418008

Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy

SONG Song-Quan,1,3,*, LIU Jun2, XU Heng-Heng2, ZHANG Qi2, HUANG Hui3, WU Xian-Jin3 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
3 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province / College of Biological and Food Engineering, Huaihua University, Huaihua 418008, Hunan, China

通讯作者: 宋松泉, E-mail: sqsong@ibcas.ac.cn

收稿日期:2018-11-22接受日期:2019-01-19网络出版日期:2019-04-09
基金资助:本研究由国家科技支撑计划项目.2012BAC01B05
国家自然科学基金项目.31371715
国家自然科学基金项目.31640059
广东省科技计划项目.2016B030303007


Received:2018-11-22Accepted:2019-01-19Online:2019-04-09
Fund supported: This study was supported by the National Science and Technology Support Program.2012BAC01B05
the National Natural Science Foundation of China.31371715
the National Natural Science Foundation of China.31640059
the Guangdong Science and Technology Program.2016B030303007


摘要
种子萌发是一种关键的生态和农业性状, 由调控种子休眠状态和萌发潜势的内在和外部信息所决定, 在植物随后的生长发育和产量中起着极其重要的作用。休眠是指种子在合适的条件下暂时不能萌发。乙烯是一种简单的具有多种功能的气体植物激素, 在分子、细胞和整体植物水平调节植物的代谢。在适宜和逆境条件下, 乙烯通过与其他信号分子的相互作用影响植物的行为。本文主要综述乙烯的生物合成与信号、乙烯在种子萌发和休眠释放中的作用以及乙烯与植物激素脱落酸和赤霉素的相互作用; 并提出了需要进一步研究的科学问题, 试图为解释乙烯调控种子萌发与休眠的分子机制提供新的研究思想。
关键词: 脱落酸;生物合成与信号;交叉反应;乙烯;赤霉素;种子萌发和休眠

Abstract
Seed germination, a key ecological and agronomic trait, is determined by both internal and external cues that regulate the dormancy status and the potential for germination in seeds, and plays a critical role during the subsequent growth, development and production of plants. Dormancy is the temporary failure of seed germination under favorable conditions. Ethylene is a simple gaseous phytohormone with multiple roles in regulation of metabolism at molecular, cellular, and whole plant levels. It influences performance of plants under optimal and stressful environments by interacting with other signaling molecules. In the present paper, we mainly summarize ethylene biosynthesis and signaling, the role of ethylene in seed germination and dormancy release, and the interaction of ethylene with phytohormone abscisic acid and gibberellin, and propose some scientific problems to be required to investigate further in order to provide an idea for explaining the molecular mechanism of seed germination and dormancy regulated by ethylene.
Keywords:abscisic acid;biosynthesis and signaling;crosstalk;ethylene;gibberellin;seed germination and dormancy


PDF (1914KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
宋松泉, 刘军, 徐恒恒, 张琪, 黄荟, 伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981. doi:10.3724/SP.J.1006.2019.84175
SONG Song-Quan, LIU Jun, XU Heng-Heng, ZHANG Qi, HUANG Hui, WU Xian-Jin. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy[J]. Acta Crops Sinica, 2019, 45(7): 969-981. doi:10.3724/SP.J.1006.2019.84175


种子是可持续农业和植物生物多样性必需的重要遗传传递系统, 种子的成功萌发和幼苗建成在农业生产和自然生态系统中起决定性作用[1,2]。休眠(dormancy)是指在合适的条件下种子暂时不萌发[3]。在许多种子植物中, 种子休眠是一种适应性特征, 使植物能够在逆境条件下存活[4]。种子休眠对植物特别是一年生植物的存活是非常重要的, 因为它能确保种子仅仅在环境条件合适时萌发[5,6]。与野生物种比较, 大多数农作物品种表现出休眠水平降低, 以及播种后高的出苗率[7,8]。种子休眠特性的不适当丧失引起新鲜成熟种子的迅速萌发, 或者甚至在收获前萌发(pre-harvest sprouting), 也称为胎萌(vivipary), 导致农业生产中产量和质量的巨大损失, 严重影响收获后的种子管理和随后的产业利用[9]

种子萌发与休眠在对环境信号的反应中被脱落酸(abscisic acid, ABA)和赤霉素(gibberellin, GA)之间的平衡所调控; 高水平的ABA和低水平的GA引起种子深休眠和出苗率降低, 而低水平的ABA和高水平的GA诱导种子胎萌[1,6,10-12]。此外, 其他植物激素(乙烯、茉莉酸和生长素)也在种子萌发控制中起作用[13,14,15], 特别是乙烯通过复杂的信号网络调节许多物种的萌发与休眠[13,16-17]

乙烯是一种简单的具有多种功能的气体植物激素, 在分子、细胞和整体植物水平调节植物的代谢[18,19,20]。在适宜和逆境条件下, 乙烯通过与其他信号分子的相互作用影响植物的行为[21,22]。本文主要综述乙烯的生物合成与信号, 乙烯在种子萌发和休眠释放中的作用, 以及乙烯与植物激素ABA和GA的相互作用; 试图为解释乙烯调控种子萌发与休眠释放的分子机制提供新的研究思想。

1 乙烯的生物合成与信号途径

1.1 乙烯的生物合成

Arc等[13]提出, 萌发种子中乙烯的生物合成途径与植物其他器官相同, 即甲硫氨酸→S-腺苷甲硫氨酸(S-adenosyl-methionine, S-AdoMet)→1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid, ACC)→乙烯。乙烯的作用主要取决于它在细胞中的浓度以及植物组织对它的敏感性[23,24]。Lieberman等[25]最初在一个化学模式系统中发现甲硫氨酸是乙烯的前体, 乙烯来自甲硫氨酸的C3和C4; 标记的甲硫氨酸能被苹果(Malus pumila)果实组织有效地转化成为乙烯[26]。这些发现随后被其他研究人员用苹果和其他植物组织证实[27], 然而, 更重要的进展是S-AdoMet和ACC被确定为植物中乙烯合成的前体[27]。甲硫氨酸通过3个关键的酶促反应产生乙烯: (1)甲硫氨酸被S-AdoMet合成酶转化成为S-AdoMet; (2) ACC合酶(ACC synthase, ACS)转化S-AdoMet成为ACC; (3) ACC氧化酶(ACC oxidase, ACO)分解ACC释放乙烯(图1)。ACC的形成通常被认为是乙烯生物合成途径中的限速步骤[19]。除了ACC以外, ACS也产生5’-甲硫腺苷(5’-methylthioadenosine, MTA), 它被用于新的甲硫氨酸的合成, 确保即使当甲硫氨酸库变小时, 高速率的乙烯生物合成也能被维持(图1)。ACO催化ACC转化成为乙烯是氧依赖的, 在厌氧条件下, 乙烯的形成被完全抑制; 在这个反应中, 还需要Fe2+和抗坏血酸(ascorbic acid, AsA)作为辅因子和共同底物。ACC能被转化成为丙二酰ACC(malonyl-ACC, MACC), 从而被失活; 从ACC分解形成的有毒气体氰化氢(HCN)被β-氰丙氨酸合酶(β-cyanoalanine synthase)去毒(图1)[19]。在N2下, ACC在苹果组织中积累[27]

图1

新窗口打开|下载原图ZIP|生成PPT
图1乙烯生物合成途径

S-腺苷甲硫氨酸(S-AdoMet)合成酶催化从甲硫氨酸形成S-AdoMet, 合成1分子的S-AdoMet消耗1分子的ATP(1)。ACC合酶催化S-AdoMet转化成为ACC是乙烯合成的限速步骤(2)。随着ACC的合成, 甲硫腺苷(MTA)是ACC合酶产生的副产物。MTA回到甲硫氨酸的再循环保存了甲硫基, 能够维持细胞中恒定的甲硫氨酸浓度。ACC丙二酰化作用成为丙二酰-ACC 使ACC库枯竭并减少乙烯的产生。ACC氧化酶利用ACC作为底物, 催化乙烯合成的最后步骤, 同时产生二氧化碳和氰化物(3)。氰化物被β-氰丙氨酸合酶代谢产生无毒的物质。ACC合酶和ACC氧化酶被同源异构蛋白、发育和环境信息的转录调节用虚线箭头表示。引自Lin等[19]
Fig. 1Ethylene biosynthetic pathway

The formation of S-adenosyl methionine (S-AdoMet) from methionine is catalysed by S-AdoMet synthetase at the expense of one molecule of ATP per molecule of S-AdoMet synthesized (1). A rate-limiting step of ethylene synthesis is the conversion of S-AdoMet to ACC by ACC synthase (2). Methylthioadenosine (MTA) is the by-product generated, along with ACC, by ACC synthase. Recycling of MTA back to methionine conserves the methylthio group and is able to maintain a constant concentration of methionine in cells. Malonylation of ACC to malonyl-ACC depletes the ACC pool and reduces ethylene production. ACC oxidase catalyses the final step of ethylene synthesis using ACC as substrate and generates carbon dioxide and cyanide (3). Cyanide is metabolized by β-cyanoalanine synthase to produce non-toxic substances. Transcriptional regulation of both ACC synthase and ACC oxidase by homeotic proteins and developmental and environmental cues is indicated by dashed arrows. From Lin et al. [19]


1.1.1 ACC合酶 在种子萌发过程中, 乙烯的增加与ACSACO转录本的逐渐积累有关[14,28]。ACS定位于细胞质, 是依赖吡哆醛-5’-磷酸(pyridoxal-5’- phosphate, PLP)酶的成员之一, 它利用维生素b6作为酶功能的辅助因子[19]。在拟南芥(Arabidopsis thaliana)中, ACS由12个成员组成的多基因家族编码, 其中8个编码功能性ACC合酶(ACS2、ACS4~ACS9、ACS11), AtACS1是一个失活的异构体, AtACS3是一个假基因, AtACS10AtACS12编码氨基转移酶[29]。三维结构测定表明, ACS形成功能二聚体; 异源二聚体的形成增加了ACS蛋白家族的结构和功能复杂性[30]。在拟南芥中, 大的ACS基因家族表现出一种组织专一的和差异的表达模式; 利用单个和多个acs敲除突变体, 证明ACS基因家族的个别成员具有特定的发育和生理作用, 而且它们之间也存在着复杂的组合相互作用[30]。在许多物种中, 不同的内外信号调节乙烯生物合成的水平, 在ACS基因表达的水平起作用; 这些诱导因子包括生长素、细胞分裂素、油菜素甾体、乙烯、铜、机械刺激、臭氧、病原体和伤害[19,31]

根据C端结构, ACS蛋白分成三种类型。类型I ACS蛋白在它们的C端结构域含有一个假定的钙依赖蛋白激酶(calcium-dependent protein kinase, CDPK)磷酸化靶位点和3个促分裂原激活的蛋白激酶(mitogen-activated protein kinase, MAPK), 类型II ACS蛋白仅仅含有MAPK磷酸化位点, 而类型Ⅲ ACS蛋白不含任何磷酸化位点[32]。研究表明, 在拟南芥[33,34]和番茄(Solanum lycopersicon)[35]中, 一些ACS成员的差异磷酸化引起蛋白质通过蛋白酶体(proteasome)降解; 一些ACS成员的蛋白稳定性进一步被蛋白磷酸酶2A(protein phosphatase 2A, PP2A)和PP2C所调节[36,37]; 这些结果表明磷酸化和去磷酸化之间的复杂平衡确保蛋白质的活性和稳定性。

1.1.2 ACC氧化酶 尽管ACS被认为是大多数植物对非生物和生物胁迫反应中产生乙烯的一个关键调节酶[38], 但是ACO活性已经被证明在种子萌发过程中起重要作用[14,39]。有趣的是, 分离ACO的关键环节是在提取介质中加入AsA[40]。虽然AsA对蛋白质稳定性/活性的确切作用还不清楚, 但已经证实AsA通过向活性位点提供一个单电子参与ACC环的打开[41]。这一催化反应释放乙烯和氰甲酸根离子(NCCO2)-, 后者被分解成为CO2和氰化物(CN-)[41]。ACO属于双加氧酶(dioxygenase)超家族, 需要Fe2+作为辅因子, 重碳酸氢盐作为激活剂[42,43,44]。ACO的亚细胞定位目前还不清楚, 一些研究将ACO定位于细胞质; 而另一些研究则将ACO定位于质膜[45,46]。尽管ACO蛋白序列不包含任何预测的跨膜结构域, 但该蛋白仍有可能通过直接(或者间接)相互作用与质膜结合[31]。在拟南芥中, ACO也由一个含有5个成员的多基因家族编码[ACO1、ACO2、ACO4、At1g12010 (ACO3)和At1g77330 (ACO5)]。拟南芥中的3个ACO基因也是由乙烯自动调控的[47]。Van de Poel 等[48]通过数学模型研究推测, ACO存在转录后和/或者翻译后调节机制。

1.2 乙烯信号

在曝露于乙烯气体下, 暗生长的拟南芥幼苗的“三重反应(triple response)”表型能够使我们容易识别乙烯不敏感的(ethylene-insensitive)和组成性反应(constitutive-response)的突变体, 这些突变体的克隆和鉴定导致了乙烯信号转导途径的线性模型的提出[49,50], 即植物中存在一条复杂的乙烯信号途径包括正、负反馈调控环, 并特别强调植物如何精细调控的机制(图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2拟南芥中乙烯信号途径的最近模型

乙烯由受体蛋白ETR1、ERS1、ETR2、ERS2和EIN4 (绿色表示)感受, 受体是乙烯信号的负调控因子。受体通过它们的GAF结构域(在受体的细胞质区域用五边形表示)与其他的受体相互作用, 并在ER膜中形成更高层次的复合物。铜(一种乙烯结合的辅因子, 红色圆圈)由铜转运体RAN1 (橙色表示)传递给受体。RTE1 (粉红色)与ETR1相联系, 介导受体信号输出。(A)在乙烯缺乏时, 受体激活CTR1 (黄色)。CTR1通过直接磷酸化EIN2的C-末端(蓝色圆圈)使其失活(紫色)。EIN2能够直接与受体的激酶结构域(在受体的细胞质区域在五边形下较大的椭圆)相互作用。EIN2的水平通过26S蛋白酶体(灰色)被F-box蛋白ETP1和ETP2(绿色星状物)负调控。在细胞核中, 转录因子EIN3/EIL1 (红色)通过蛋白酶体被另外2个F-box蛋白EBF1/2(蓝色星状物)降解。在EIN3/EIL1缺乏时, 乙烯反应基因的转录被关闭。(B)在乙烯存在时, 受体与激素结合并失去活性, 依次关闭CTR1。这种失活阻止正调控因子EIN2的磷酸化。EIN2的C-末端被一种未知的机制所剪切, 并移动到细胞核, 在细胞核中使EIN3/EIL1稳定和诱导EBF1/2的降解。转录因子EIN3/EIL1形成二聚体, 激活乙烯靶基因的表达, 包括F-box基因EBF2 (深蓝色卷曲线, 它产生抑制乙烯途径活性的负反馈环)或者转录因子基因ERF1(淡蓝色线, 它依次始启一个转录级联, 导致数百个乙烯调控基因的活化和抑制)。在乙烯反应基因中有受体基因ETR2 (绿色线), 它的mRNA被乙烯上调, 以及被翻译成为一批新的没有与乙烯结合的受体分子; 这些受体分子然后活化负调控因子CTR1, 从而提供了在不添加乙烯的情况下向下调节乙烯信号的手段。途径中的其他调控节点是核糖核酸外切酶EIN5 (淡橙色, 它控制EBF2 的mRNA水平)以及F-box蛋白ETP1和ETP2 (绿色星状物, 在乙烯存在时, 它们被降解, 导致EIN2的稳定)。正箭头和负箭头分别表示激活和下调这个过程。颜色变浅表示的分子(在‘没有乙烯’中的EIN3/EIL1, 或者在‘乙烯’中的ETP1/2和EBF1/2)相应于蛋白酶体介导降解的被标记的不稳定蛋白。卷曲线表示特定的mRNA, 它们的颜色与相应的蛋白质颜色相一致。引自Merchante等[51]
Fig. 2The current model of the ethylene signaling pathway in Arabidopsis

Ethylene is perceived by the receptor proteins ETR1, ERS1, ETR2, ERS2, and EIN4 (represented in green), the receptors are negative regulators of ethylene signaling. The receptors interact with other receptors and form higher order complexes in the ER membrane through their GAF domains (represented as pentagons in the receptors’ cytosolic domain). Copper (a cofactor for ethylene binding, red circles) is delivered to the receptors by the copper transporter RAN1 (represented in orange). RTE1 (in pink) is associated with ETR1 and mediates the receptor signal output. (A) In the absence of ethylene, the receptors activate CTR1 (in yellow). CTR1 inactivates EIN2 (in purple) by directly phosphorylating (blue circles) its C-terminal end. EIN2 can directly interact with the kinase domain of the receptors (represented as the larger ovals under the pentagons in the cytosolic domain of the receptors). The levels of EIN2 are negatively regulated by the F-box proteins ETP1 and ETP2 (green star) via the 26S proteasome (gray). In the nucleus, the transcription factors EIN3/EIL1 (in red) are being degraded by two other F-box proteins, EBF1/2 (blue star), through the proteasome. In the absence of EIN3/EIL1, transcription of the ethylene response genes is shut off. (B) In the presence of ethylene, the receptors bind the hormone and become inactivated, which in turn, switches off CTR1. This inactivation prevents the phosphorylation of the positive regulator EIN2. The C-terminal end of EIN2 is cleaved off by an unknown mechanism and moves to the nucleus where it stabilizes EIN3/EIL1 and induces degradation of EBF1/2. The transcription factors EIN3/EIL1 dimerize and activate the expression of ethylene target genes, including the F-box gene EBF2 (dark blue curly line) [which generates a negative feedback loop dampening the activity of the ethylene pathway] or the transcription factor gene ERF1 (light blue line) [which, in turn, initiates a transcriptional cascade resulting in the activation and repression of hundreds of ethylene-regulated genes]. Among the ethylene responsive genes the receptor gene is ETR2 (green line), whose mRNA is up-regulated by ethylene and translated into the new batch of ethylene-free receptor molecules which then activate the negative regulator CTR1, thus providing the means of tuning down ethylene signaling in the absence of additional ethylene. Other regulatory nodes in the pathway are the exoribonuclease EIN5 (light orange), which controls the levels of EBF2 mRNA, and the F-box proteins ETP1 and ETP2 (green star) that are degraded in the presence of ethylene leading to the stabilization of EIN2. Positive and negative arrows represent activation and down-regulation processes, respectively. Molecules shown in fading colors (EIN3/EIL1 in ‘no ethylene’, or ETP1/2 and EBF1/2 in ‘ethylene’) correspond to unstable proteins targeted to proteasome-mediated degradation. Curly lines indicate specific mRNAs, with their colors matching that of the corresponding proteins. From Merchante et al.[51]


1.2.1 乙烯信号途径 乙烯信号级联从乙烯与受体结合开始, 到转录调节结束。乙烯受体是一个多成员家族, 在拟南芥中由ETR1 (ethylene resistant 1)、ERS1 (ethylene response sensor 1)、ETR2、ERS2和EIN4 (ethylene insensitive 4)组成, 它们与乙烯的结合都具有高的亲和力。根据接受区域的存在(ETR1、ETR2和EIN4)或者缺乏(ERS1和ERS2), 受体可分为2种类型[51]。这些受体以同源二聚体的形式起作用, 是信号途径的负调控因子, 在乙烯缺乏时主动抑制乙烯反应[21,51-52]。已经证明, 这些受体在乙烯反应的控制中是大量冗余的, 但不同异构体之间具有一些功能特异性[51]。受体主要存在于内质网(endoplasmic reticulum, ER)膜中, 由于乙烯能够在细胞的水环境和脂质环境中自由扩散, 受体的ER定位可能促进与其他细胞成分的相互作用和/或者使信号能够与其他途径整合[53]

根据系统发育分析和共有的结构特征, 所有的乙烯受体都有一个模块化结构, 包括一个负责与乙烯结合的N端跨膜结构域, 一个不同受体类型之间与蛋白质-蛋白质相互作用有关的GAF结构域, 以及一个与途径下游组分相互作用所需的C端结构域[49,54]。尽管受体的C端具有细菌双组分组氨酸激酶(two- component histidine kinases)的结构相似性, 但受体的自体激酶活性(autokinase activity)在乙烯反应中仅仅起较小的作用[53]。乙烯受体的基本功能单元是能够与乙烯结合的同源二聚体。在通过GAF结构域相互作用的同源二聚体中, 能够发生更高层级的联系, 从而在膜中产生受体簇[55,56]

由细胞内铜转运体RAN1 (copper transporter RAN1)提供的铜是乙烯结合和受体功能都需要的[57]ran1功能丧失突变的植株缺乏乙烯结合活性, 表现出类似于受体功能丧失的突变体的表型; 此外, 用铜螯合剂处理的ran1弱等位基因表现出类似于乙烯处理的野生型植株的表型[58], 以及添加Cu2+到这些植株能部分抑制ran1的表型[57]。这些结果提出, RAN1在乙烯受体的生物发生中起必不可少的作用。

乙烯敏感性逆转1 (reversion-to-ethylene sensitivity 1, RTE1)是乙烯反应的一种负调控因子[59], 与受体一起共定位在ER, 但在高尔基体(Golgi apparatus)的膜中也被检测到[60]。RTE1通过促进ETR1从失活(在乙烯存在下)信号状态转变成为活化(无乙烯)信号状态专一地激活ETR1[61]

尽管受体的确切输出功能仍然不清楚, 但遗传学研究表明, 在乙烯缺乏时, 受体激活了途径中的一个负调控因子CTR1 (constitutive triple response 1)。CTR1是一种丝氨酸/苏氨酸(Ser/Thr)蛋白激酶, 当它被活化时形成同源二聚体。活化的CTR1激酶二聚体参与乙烯受体簇之间的交叉相互作用[62]。CTR1的下游是EIN2, 乙烯信号级联中的一个关键分子。EIN2蛋白包含一个由12个预测的跨膜结构域组成的N端疏水区域和一个含有保守的核定位序列的亲水C端区域[63,64]。疏水区域与金属离子转运体的NRAMP家族类似, 但EIN2没有表现出转运体的活性[65]。EIN2存在于ER膜中, 与乙烯受体的激酶结构域相互作用[66]。当用乙烯处理时, EIN2积累, 以及对于下游途径组分EIN3的稳定是绝对需要的[67]。EIN2作为关键组分在乙烯信号中起作用, 但是花了13年多的时间才确定这个有趣的分子怎样从ER中的受体把乙烯信号传递到核内转录因子EIN3/EIL1, 从而调控下游基因的表达。已经表明, EIN2的C端从ER膜物理运动到细胞核, 允许乙烯信号到达下游组分EIN3和EILs [64,68-69]。Chen等[70]的研究表明, 在乙烯存在下, EIN2在多个丝氨酸和苏氨酸残基上缺乏磷酸化。Ju等[68]随后证明, EIN2与CTR1之间存在物理相互作用, 在乙烯缺乏时CTR1直接磷酸化EIN2 C端的蛋白激酶, 从而阻止C端向下游组分EIN3及其同系物EILs传递信号。然而, 去磷酸化是否直接促进EIN2的裂解或者增强EIN2 C端的稳定性目前还不清楚[71]。Ju等[68]的研究结果显示, 对于CTR1和EIN2之间的信号转导不需要MAPKK或者MAPK活性。EIN2的C端一旦进入细胞核将使EIN3稳定和引起EIN3/EILs依赖的转录级联的活化[64,68-69]

EIN3和EILs (拟南芥中的EIL1)是短寿命蛋白, 它们作为乙烯信号途径的正调控因子起作用。EIN3和EIL1是产生乙烯反应的主要输出的2个关键转录因子, 对于乙烯反应基因的表达是必需的和足够的。EIN3/EILs以二聚体的形式起作用, 至少在番茄EIL1中一个保守的磷酸化位点的突变扰乱了烟草(Nicotiana tabacum)双分子荧光互补(Bimolecular fluorescence complementation, BiFC)系统中的荧光信号, 以及消除了番茄植株中相应的转基因活性[72]。当被EIN3/EILs转录激活时, 乙烯靶基因介导了植物对乙烯的一系列反应[50]。使用染色质免疫沉淀测序(chromatin immunoprecipitation sequence, ChIP-seq), Chang等[73]发现EIN3以四波的方式(four-wave manner)调控下游基因的转录, 每波包含一组唯一的EIN3靶子, 它们逐渐增加地调节许多下游的转录级联。重要的是, 一些下游的EIN3靶子相当于其他激素信号途径的关键组分, 从而强化了不同植物激素之间存在复杂的相互作用网络的思想。在拟南芥中鉴定的上述所有乙烯信号组分在进化上距离较远的物种中都是保守的, 表明植物中的乙烯信号机制是普遍的[51]

1.2.2 信号组分的转换与反馈调节 随着研究进展, 已经发现乙烯线性信号途径实际上是一条更为复杂的路线, 包括反馈调控的转录网络, 以及mRNA和蛋白质转换调控模块[50]。蛋白酶体介导的蛋白质降解在乙烯信号级联的调控中起主要作用。在受体水平, 乙烯通过26S蛋白酶体诱导ETR2降解; 同时, 乙烯转录激活ETR2ERS1ERS2[74]

EIN2和EIN3/EIL1的蛋白水平也被专一的F-box蛋白严格调控, 在乙烯缺乏时, F-box蛋白使它们发生蛋白酶体介导的降解[75,76]。在对乙烯信号反应中, ETP1 (EIN1-targeting protein 1)和ETP2控制EIN2的水平[76], 而EBF1 (EIN3 binding F-box 1)特别是EBF2调控EIN3的水平[75,77]。为了进一步增加这个调控模块的复杂性, EBF1/2和ETP1/2的蛋白水平被乙烯下调, 至少在EBF1/2中这一过程被蛋白酶体介导[67,76]EBF2 (被乙烯转录诱导)本身就是EIN3的一个靶子, 这能够解释乙烯反应中每个EBF的不同作用[78], 从而建立一个复杂的反馈调控机制。作为这些调控回路的最终输出, 细胞核中EIN3/EIL1的蛋白水平被精细地调控, 以协调一组乙烯反应的活化。换句话说, EBF2转录的乙烯依赖性的增加与EBF1和EBF2蛋白稳定性的减少之间的平衡被认为是调节EIN3/EIL1的转换, 为调节植物对乙烯的反应提供了一种动态机制。5'-3'核糖核酸外切酶XRN4/EIN5提供了另一个层次的调控, 该酶通过一个未知的机制下调EBF1EBF2 mRNA的水平。由于EIN5的分子性质, 提出了一种控制乙烯反应的RNA降解模块[50]。与上述其他调控环不同, EIN2和ETPs都不受乙烯的转录调控[79]

2 乙烯在种子萌发与休眠释放中的作用

2.1 乙烯对种子萌发的促进作用

乙烯的产生在种子吸胀开始后立即发生, 并随着萌发时间的延长而增加; 乙烯释放高峰与胚根突破种皮一致[2,80-81]。种子中乙烯的产生是物种依赖的, 但在吸胀过程中乙烯的释放量常常低于用气相色谱可检测到的水平。利用高灵敏度的激光光声光谱(laser photoacoustic spectroscopy), El-Maarouf- bouteau等[2]已经证实在向日葵(Helianthus annuus)种子萌发结束时乙烯出现高峰。乙烯对种子萌发的促进作用是剂量依赖的, 当应用的浓度为0.1~200 μL L-1时是有效的, 这取决于物种、休眠深度和环境条件。尽管乙烯促进许多光敏种子的萌发, 但是它不能克服反枝苋(Amaranthus retroflexus)、芹菜(Apium graveolens)、莴苣(Lactuca sativa)和大爪草(Spergula arvensis)种子萌发对光的需要[16]

2.2 外源乙烯打破种子休眠

外源乙烯或者乙烯利(一种释放乙烯的化合物)能打破一些种子的初生和次生休眠[16,82](表1)。在表现出种皮强制休眠的一些物种中, 乙烯也能打破休眠和促进萌发, 例如苍耳(Xanthium sibiricum)、地三叶(Trifolium subterraneum)、皱叶酸模(Rumex crispus)和拟南芥[16]。特别是在莴苣、向日葵、尾穗苋(Amaranthus caudatus)和繁穗苋(Amaranthus paniculatus)种子中, 乙烯也能打破由高温诱导的次生休眠[16,83]。ACC能促进松果菊属(Echinacea)植物种子的萌发[84], 也能促进寄生植物例如独脚金(Striga asiatica)[16]种子的萌发。乙烯增加非休眠种子在非最适环境条件例如高温、渗透胁迫、缺氧和盐胁迫下的萌发[16,85-86]

Table 1
表1
表1乙烯、乙烯利或者1-氨基环丙烷-1-羧酸打破种子休眠的物种(引自Corbuneau et al.[16])
Table 1Plant species whose seed dormancy is broken by ethylene, ethephon, or 1-aminocyclopropane-1-carboxylic acid (From Corbineau et al.[16])
初生休眠 Primary dormancy次生休眠 Secondary dormancy热休眠 Thermo dormancy
尾穗苋 Amaranthus caudatus尾穗苋 Amaranthus caudatus莴苣 Lactuca sativa
反枝苋 Amaranthus retroflexus繁穗苋 Amaranthus paniculatus
拟南芥 Arabidopsis thaliana向日葵 Helianthus annuus
花生 Arachis hypogaea莴苣 Lactuca sativa
Chenopodium album皱叶酸模 Rumex crispus
欧洲水青冈 Fagus sylvatica苣头苍耳 Xanthium pennsylvanicum
向日葵 Helianthus annuus
苹果 Malus pumila
南欧盐肤木 Rhus coriaria
皱叶酸模 Rumex crispus
柱花草 Stylosanthes humilis
地三叶 Trifolium subterraneum
苣头苍耳 Xanthium pennsylvanicum

新窗口打开|下载CSV

在苹果种子冷处理[87], 或者向日葵[88]、反枝苋[82]和柱花草(Stylosanthes humilis)[89]种子干藏过程中, 休眠的打破都与乙烯敏感性的增加有关。在刚收获时, 休眠的向日葵种子在15℃下需要50 μL L-1乙烯才能发芽; 但在5℃下分别干藏8周和15周后, 仅仅需要10 μL L-1和3 μL L-1乙烯[88]。相反, 在诱导次生休眠的环境条件下, 乙烯的反应性在种子萌发过程中逐渐下降[88]

2.3 乙烯生物合成与信号对种子萌发与休眠的调控

许多研究表明, 萌发能力与乙烯的产生有关, 表明乙烯调控种子萌发与休眠[13,39,90]。例如, 鹰嘴豆(Cicer arietinum)、向日葵和莴苣种子在高温下热休眠的诱导与乙烯产生的降低有关[16]。乙烯产生的下降可能导致ACC-丙二酰转移酶活性的增加, ACC含量下降; ACO活性被抑制, 或者ACSACO表达降低[16,91]。相反, 一些处理(如低温、GA、一氧化氮、HCN)打破种子休眠, 导致乙烯产生增加[13]

利用乙烯生物合成途径的抑制剂或者改变乙烯生物合成和信号途径的突变体获得的数据表明, 内源乙烯在种子萌发和休眠的调控中起关键作用。种子在氨基乙氧基乙烯甘氨酸(aminoethoxyvinyl glycine)和氨基氧乙酸(aminooxyacetic acid, AOA)(ACS活性抑制剂), CoCl2和α-氨基异丁酸(α-aminoisobutyric acid)(ACO活性抑制剂)或者2,5-降冰片二烯(2,5- norbornadiene)和硫代硫酸银(silver thiosulfate)(乙烯作用抑制剂)中的萌发表明, 内源乙烯参与萌发和打破休眠[16,92]。相反, 乙烯的直接前体ACC促进许多物种的种子萌发, 例如莴苣、向日葵、苍耳、苋属植物(Amaranthus sp.)、鹰嘴豆和甜菜(Beta vulgaris)[16]。值得注意的是, ACC氧化的一种副产物HCN也能打破苹果[93]、向日葵[94]和反枝苋[82]种子的休眠。

利用在乙烯生物合成和信号中发生改变的拟南芥品系允许表征乙烯对休眠的调控作用。与野生型比较, etr1ein2突变体的种子表现出初生休眠增加, 可能是由于ABA敏感性提高; 而ctr1突变体轻微地提高萌发速率[95,96]。EIN2的功能丧失导致拟南芥种子在萌发和早期幼苗发育过程中对盐和渗透胁迫过敏[97]。在休眠的水青冈(Fagus longipetiolata)胚中FsERF1 (Fs ethylene response factor 1)的表达极少, 但在湿冷过程中增加, 从而打破休眠[98]。在向日葵中, ERF1在非休眠胚中的表达是休眠胚的5倍, 以及ERF1的表达被HCN显著地促进[94]。在番茄萌发种子中SlERF2转录本的丰度比非萌发种子高, 在转基因系中的过表达导致种子成熟前萌发[99]

休眠和后熟的拟南芥种子的转录组数据表明, 在休眠状态下ACS2基因的表达上调, 在萌发状态下AtERF5的表达上调[100]。在莴苣中, Argyris等[91]表明乙烯反应基因被热抑制调控; 在高温下, ACSACO的基因表达下降, 而CTR1EIN2ETR1的表达增加。这些结果提示激素代谢与信号调控在基因表达水平上存在差距。在小麦(Triticum aestivum)种子中, 注释为乙烯代谢和信号基因的78个探针组在休眠和后熟种子之间被差异表达。果胶裂解酶1、扩展蛋白A2、β-1,3-葡聚糖酶和几丁质酶β被认为是假定的乙烯反应的下游基因, 这些基因在独行菜(Lepidium apetalum)种子萌发过程中在胚乳弱化和/或者胚根生长中起重要的作用[101]

3 乙烯与植物激素脱落酸和赤霉素的相互作用

种子植物中种子休眠的激素调控可能是一种高度保守的机制。在许多物种中观察到种子休眠被ABA诱导和维持, 被GA释放[102]。利用ABA和GA生物合成和信号突变体的大量遗传研究表明, 这2种激素在种子休眠和萌发中具有重要的作用和互相拮抗的作用[10,103]。在莴苣种子萌发中, ABA抑制种子萌发, GA促进种子萌发且具有拮抗ABA的作用[104]。下面主要讨论乙烯通过抑制ABA的代谢与信号和增强GA的代谢与信号调控种子的萌发与休眠。

3.1 乙烯和ABA之间的交叉作用

3.1.1 ABA对乙烯代谢的影响 在种子萌发过程中, ABA和乙烯之间的拮抗作用已经在许多物种中被阐明[13-14,105]。在拟南芥和家独行菜(Lepidium sativum)中, 乙烯拮抗ABA对胚乳帽弱化和胚乳破裂的抑制作用[101]。ABA也增加打破初生和次生休眠的乙烯需要量; ABA对萌发的抑制与乙烯产生的减少有关; ABA明显抑制体内ACO的活性, 这种抑制作用与减少的ACO转录本的积累有关[13,16,101](图3)。在拟南芥中, ABA通过ABI4介导的ACS4ACS8的转录抑制拮抗乙烯的产生[105]。在拟南芥种子萌发过程中, 胚和胚乳中ACO1转录本的积累被ABA抑制; ABA不敏感突变体中高水平的ACO1转录本表明, ACO的表达被ABA调节[101,106]; 在胚中, ACO2转录本的积累也被ABA抑制[106]。在家独行菜中, ABA对ACO1ACO2的抑制作用被限于胚乳帽[101]。同样, 拟南芥aba2突变体的芯片分析发现了ACO转录本积累的上调[107]

图3

新窗口打开|下载原图ZIP|生成PPT
图3乙烯、脱落酸和赤霉素在种子萌发和休眠调控中的相互作用

该方案是基于正文中引证的种子对乙烯、脱落酸或者GA响应的遗传分析、芯片数据和生理研究。乙烯通过抑制ABA的合成和促进它的失活或者分解代谢下调ABA的积累, 也负调控ABA信号。ABA通过ACS和ACO的活性抑制乙烯的生物合成。乙烯也增强GA的代谢和信号, 反过来也一样。“→”和“┤”分别表示信号级联的不同元素之间的正、负相互作用。根据Corbineau等[16]重绘。
Fig. 3Interaction among ethylene, abscisic acid, and gibberellin in the regulation of seed germination and dormancy

This scheme is based on genetic analyses, microarray data, and physiological studies on seed responsiveness to ethylene, ABA or GA cited in the text. Ethylene down-regulates ABA accumulation by both inhibiting its synthesis and promoting its inactivation or catabolism, and also negatively regulates ABA signaling. ABA inhibits ethylene biosynthesis through ACS and ACO activities. Ethylene also improves the GA metabolism and signaling, and vice versa. “→” and“ ┤” indicate positive and negative interactions between the different elements of the signaling cascade, respectively. Redrew from Corbineau et al. [16].


3.1.2 乙烯对ABA代谢和信号的影响 etr1ein2的种子表现出比野生型更高的ABA含量, 以及萌发更缓慢[95,97]。ABA-葡萄糖酯(ABA-glucose ester)的水平在etr1-2种子中减少, 因此, 增加的ABA积累可能是由于ABA结合的减少[95]。然而, 乙烯也可能调节其他酶促步骤, 芯片分析表明在ein2NCED3上调, 在etr1-1CYP707A2下调[107]ein2中的高水平ABA也与ABA1的上调有关[97]

一些研究表明, 在种子萌发过程中乙烯不仅对ABA代谢起作用以降低ABA水平, 而且负调节ABA信号(图3)。实际上, 降低乙烯敏感性的突变(如etr1ein2ein6)导致ABA敏感性的增加, 而在ctr1eto1 (ethylene overproduction 1)中增加的乙烯敏感性降低了ABA的敏感性[96,101,108]。例如, CTR1的突变增强了abi1-1种子的ABA不敏感性, 乙烯不敏感突变体如ein2降低了ABA不敏感性[109]。然而, 在ein3、ein4、ein5ein7中, 没有观察到ABA敏感性的显著性差异[96]

此外, 水青冈种子酪氨酸磷酸酶FsPTP1在拟南芥种子中的过表达通过ABA信号下调和EIN2上调减少休眠, 提出FsPTP1在ABA信号中的负作用可能是由乙烯信号调控的结果[110]。尽管ABA和乙烯信号途径之间存在相互作用, 但遗传证据表明它们可能平行地起作用, 因为通过乙烯突变体(ctr1ein1ein3ein6)与aba2突变体杂交获得的双突变体表现出ABA缺乏和乙烯敏感性改变所引起的表型[107]

3.2 乙烯和GA之间的相互作用

在许多物种中, GA促进休眠种子的萌发, 这种休眠也被乙烯、乙烯利或者ACC打破(表1)。在拟南芥中, 乙烯恢复GA缺乏突变体ga1-3的萌发, 而对番茄GA缺乏突变体gib-1的萌发没有促进效应; 但GA3促进etr1突变体的萌发。这些数据表明乙烯和GA途径相互作用[15,39]

在水青冈种子中, 胚在GA3中培养导致ACC的积累、ACC氧化酶活性和乙烯产生增加, 与FsACO1的表达增加一致[111]。同样, GA4对拟南芥ga1-3突变体种子萌发的促进作用与AtACO的增加有关[112]。在GA生物合成抑制剂多效唑存在下, FsACO1的表达减少证实GA激活乙烯生物合成途径[111,113]。然而, 在钻果大蒜芥(Sisymbrium officinale)中, Iglesias- Fernandez等[28]表明, SoACS7SoACO2在萌发过程中的表达被多效唑抑制, 但不受乙烯利或者GA4+7的影响。此外, 在GA4存在时拟南芥中乙烯反应感受器1 (ETHYLENE RESPONSE SENSOR 1, AtERS1)(编码一个乙烯受体家族成员)[112], 以及在GA3存在时水青冈中类EIN-3[114]的上调表明了GA对乙烯反应的影响。

许多数据表明, 乙烯通过影响GA的生物合成或者信号途径来促进种子萌发。与野生型比较, GA1、GA4和GA7在拟南芥etr1-2突变体的干燥成熟种子中大量地积累, 在吸胀的前2 d, GA4和GA7的含量依然比野生型高[95]。萌发过程中GA含量的变化表明, ETR1即乙烯信号途径的缺陷导致(1)GA生物合成途径的改变; (2)促进萌发需要比野生型更高水平的GA[95]。在水青冈种子中, 与活性GA合成有关的FsGA20ox1的表达在层积种子(即非休眠种子)和用GA3或者乙烯利处理的种子中仍然较低, 但由AOA所引起的乙烯生物合成的抑制导致这个转录本的增加, 表明乙烯参与了GA生物合成的调控[113]。在GA4+7、乙烯以及GA合成或者乙烯合成与信号抑制剂存在时, 钻果大蒜芥种子吸胀过程中与GA合成(SoGA3ox2SoGA20ox2)和降解(SoGA2ox6)有关的基因表达研究表明, GA生物合成被GA和乙烯显著地调控[28]

赤霉素信号途径依赖于DELLA蛋白, 包括GA不敏感(GAI)、ga1-3抑制因子(RGA)、类RGA1 (RGL1)、RGL2和RGL3 [115]。GA使DELLA蛋白不稳定, DELLA蛋白通过与GA结合发生泛素化和降解, 作为生长抑制因子起作用[116]。Achard等[117]报道, 在拟南芥中乙烯对下胚轴生长和花转变(floral transition)的一部分作用是通过它对DELLA蛋白的影响介导的。在控制种子萌发中也可能是这样, 因为DELLA蛋白似乎在种子萌发的调控中起关键作用[118,119]。因此, 种子中GA的含量和响应性可能是由乙烯对DELLA蛋白积累的调节所引起的。

4 结语

乙烯促进种子萌发和休眠释放, 通过影响ABA和GA的生物合成与信号起重要作用。在ACC的代谢中, 除了被ACO氧化成为乙烯外, 也能被ACC- N-丙二酰转移酶转化成为它的主要衍生物1-丙二酰-ACC (1-malonyl-ACC); ACC的第二个衍生物是由γ-谷氨酰转肽酶催化形成的γ-谷酰基-ACC (γ-glutamyl-ACC); 第三个衍生物是茉莉酯-ACC (jasmonyl- ACC); ACC也能由ACC脱氨酶代谢成为铵和α-酮戊二酸[31]。这些衍生物都是精细的生化分流器, 能够调节可用于产生乙烯的ACC池, 但这些ACC衍生物的确切生物学作用以及它们之间怎样维持平衡的机制还不清楚。

Zhang等[120]表明在缺乏CTR1的突变体中乙烯受体的N端部分可以有条件地介导受体信号的输出, 提出了一条不涉及CTR1的交替乙烯受体信号途径(alternate route of ethylene receptor signaling); 但交替信号转导途径所涉及的组分, 以及与线性信号转导途径(图2)在负调控乙烯信号中的动态协调是不清楚的。在对宽范围乙烯浓度的反应中, 这2条途径可能促进乙烯信号的动态微调。

乙烯与ABA和GA相互作用, 后2种激素都是种子萌发与休眠的重要调节因子[15,102,121]。因此, 乙烯促进种子萌发的作用可能是通过参与C2H4-GA- ABA的交互作用而产生, 但其作用是直接的还是间接的需要证明; ABA和GA对种子中乙烯生物合成和信号途径的影响也需要进一步的研究。活性氧(reactive oxygen species)也通过激素网络特别是与ABA和GA一起调控种子萌发[2,13,16], 因此, 区分不同信号途径的等级及其作为环境信号感受器的作用将是重要的。

组学(-omics)技术已应用于种子萌发与休眠释放的研究[122,123,124], 结合种子乙烯生物合成和信号突变体, 以及利用相应的抑制剂实验, 建立新的乙烯对种子萌发与休眠释放的组学研究体系, 包括转录组、翻译组、蛋白质组、代谢组和环境组等将有助于探明种子萌发与休眠释放过程的调控网络。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 . 种子萌发及其调控的研究进展
作物学报, 2014,40:1141-1156.

[本文引用: 2]

Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q . Research progress in seed germination and its control
Acta Agric Sin, 2014,40:1141-1156 (in Chinese with English abstract).

[本文引用: 2]

El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu S M, Balzergue S, Baudouin E, Bailly C . Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination
Plant Cell Environ, 2015,38:364-374.

DOI:10.1111/pce.2015.38.issue-2URL [本文引用: 4]

Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H . Physiology of Development, Germination and Dormancy, 3rd edn
New York: Springer, 2013. pp 247-297.

[本文引用: 1]

Finkelstein R, Reeves W, Ariizumi T, Sreber C . Molecular aspects of seed dormancy
Annu Rev Plant Biol, 2008,59:387-415.

DOI:10.1146/annurev.arplant.59.032607.092740URL [本文引用: 1]

宋松泉 . 种子休眠. 见: “10000个科学难题”农业科学编委会. 10000个科学难题 . 北京: 科学出版社, 2011. pp 31-35.
[本文引用: 1]

Song S Q. Seed dormancy. In: The Editorial Board of Agricultural Science for 10000 Selected Problems in Sciences, eds. 10000 Selected Problems in Sciences. Beijing: Science Press, 2011. pp 31-35(in Chinese).
[本文引用: 1]

Shu K, Liu X D, Xie Q, He Z H . Two faces of one seed: hormonal regulation of dormancy and germination
Mol Plant, 2016,9:34-45.

DOI:10.1016/j.molp.2015.08.010URL [本文引用: 2]

Lenser T, Theissen G . Molecular mechanisms involved in convergent crop domestication
Trends Plant Sci, 2013,18:704-714.

DOI:10.1016/j.tplants.2013.08.007URL [本文引用: 1]

Meyer R S, Purugganan M D . Evolution of crop species: genetics of domestication and diversification
Nat Rev Genet, 2013,14:840-852.

[本文引用: 1]

Simsek S, Ohm J B, Lu H, Rugg M, Berzonsky W, Alamri M S, Mergoum M . Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat
J Sci Food Agric, 2014,94:205-212.

DOI:10.1002/jsfa.2014.94.issue-2URL [本文引用: 1]

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J . Molecular mechanisms of seed dormancy
Plant Cell Environ, 2012,35:1769-1786.

DOI:10.1111/pce.2012.35.issue-10URL [本文引用: 2]

Hoang H H, Sechet J, Bailly C, Leymarie J, Corbineau F . Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation.
Plant Cell Environ, 2014,37:1393-1403.



Lee H G, Lee K, Seo P J . The Arabidopsis MYB96 transcription factors play a role in seed dormancy
Plant Mol Biol, 2015,87:371-381.

DOI:10.1007/s11103-015-0283-4URL [本文引用: 1]

Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A . ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination
Front Plant Sci, 2013,4:63. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2013.00063.

[本文引用: 8]

Linkies A, Leubner-Metzger G . Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination
Plant Cell Rep, 2012,31:253-270.

DOI:10.1007/s00299-011-1180-1URL [本文引用: 4]

Miransari M, Smith D L . Plant hormones and seed germination
Environ Exp Bot, 2014,99:110-121.

DOI:10.1016/j.envexpbot.2013.11.005URL [本文引用: 3]

Corbineau F, Xia Q, Bailly C, EI-Maarouf-Bouteau H . Ethylene, a key factor in the regulation of seed dormancy
Front Plant Sci, 2014,5:539. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2014.00539.

[本文引用: 17]

Khan N A, Khan M I R, Ferrante A, Poor P . Editorial: Ethylene: a key regulatory molecule in plants
Front Plant Sci, 2017,8:1782. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2017.01782.

URL [本文引用: 1]

Khan N A, Khan M I R . The Ethylene: from senescence hormone to key player in plant metabolism
J Plant Biochem Physiol, 2014,2:e124. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.4172/2329-9029.1000e124.

[本文引用: 1]

Lin Z, Zhong S, Grierson D . Recent advances in ethylene research
J Exp Bot, 2009,60:3311-3336.

DOI:10.1093/jxb/erp204URL [本文引用: 7]

Schaller G E . Ethylene and the regulation of plant development
BMC Biol, 2012,10:9. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1186/1741-7007-10-9.

[本文引用: 1]

Müller M, Munné-Bosch S . Ethylene response factors: a key regulatory hub in hormone and stress signaling
Plant Physiol, 2015,169:32-41.

DOI:10.1104/pp.15.00677URL [本文引用: 2]

Thao N P, Khan M I R, Thu N B A, Hoang X L T, Asgher M, Khan N A, Tran L S P . Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress
Plant Physiol, 2015,169:73-84.

DOI:10.1104/pp.15.00663URL [本文引用: 1]

Arraes F B M, Beneventi M A, de Sa M E L, Paixao J F R, Albuquerque E V S, Marin S R R, Purgatto E, Nepomuceno A L, Grossi-de-Sa M F . Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance
BMC Plant Biol, 2015,15:213. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1186/s12870-015-0597-z.

URL [本文引用: 1]

Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R . Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions
Plant Biotechnol J, 2014,12:685-693.

DOI:10.1111/pbi.2014.12.issue-6URL [本文引用: 1]

Lieberman M, Mapson L W . Genesis and biogenesis of ethylene
Nature, 1964,204:343-345.

DOI:10.1038/204343a0 [本文引用: 1]

Lieberman M, Kunishi A, Mapson L W, Wardale D A . Stimulation of ethylene production in apple tissue slices by methionine
Plant Physiol, 1966,41:76-82.

[本文引用: 1]

Yang S F, Hoffman N E . Ethylene biosynthesis and its regulation in higher plants
Annu Rev Plant Physiol, 1984,35:155-189.

DOI:10.1146/annurev.pp.35.060184.001103URL [本文引用: 3]

Iglesias-Fernandez R, Matilla A . Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of
Sisymbrium officinale L. seeds. Planta, 2010,231:653-664.

[本文引用: 3]

Yamagami T, Tsuchisaka A, Yamada K, Haddon W F, Harden L A, Theologis A . Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family
J Biol Chem, 2003,278:49102-49112.

DOI:10.1074/jbc.M308297200URL [本文引用: 1]

Tsuchisaka A, Yu G, Jin H, Alonso J M, Ecker J R, Zhang X, Gao S, Theologis A . A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana.
Genetics, 2009,183:979-1003.

[本文引用: 2]

Van de Poel B, Van Der Straeten D . 1-aminocyclopropane-1- carboxylic acid (ACC) in plants: more than just the precursor of ethylene!
Front Plant Sci, 2014,5:640. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2014.%2000640.

[本文引用: 3]

Yoon G M, Kieber J J . 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants
AOB Plants, 2013, 5: plt017. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1093/aobpla/plt017.

[本文引用: 1]

Christians M J, Gingerich D J, Hansen M, Binder B M, Kieber J J, Vierstra R D . The BTB ubiquitin ligases ETO1, EOL1, and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels
Plant J, 2009,57:332-345.

DOI:10.1111/tpj.2009.57.issue-2URL [本文引用: 1]

Lyzenga W J, Booth J K, Stone S L . The Arabidopsis RING- type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane- 1-carboxylate synthase 7
Plant J, 2012,71:23-34.

DOI:10.1111/tpj.2012.71.issue-1URL [本文引用: 1]

Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H . Turnover of LeACS2, a wound-inducible 1-aminocyclopropane- 1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation
Plant J, 2010,64:140-150.

[本文引用: 1]

Ludwikow A, Ciesla A, Kasprowicz-Maluski A, Mitula F, Tajdel M, Galganski L, Ziolkowski P A, Kubiak P, Maleck A, Piechalak A, Szabat M, Gorska A, Dabrowski M, Ibragimow I, Sadoqski J . Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis
Mol Plant, 2014,7:960-967.

DOI:10.1093/mp/ssu025URL [本文引用: 1]

Skottke K R, Yoon G M, Kieber J J, DeLong A . Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms
PLoS Genet, 2011,7:e1001370. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1371/journal.pgen.10%2001370.

URL [本文引用: 1]

Van de Poel B, Bulens I, Markoula A, Hertog M L A T M, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft M P, Sauter M, Nicolai B M, Geeraerd A H . Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening
Plant Physiol, 2012,160:1498-1514.

DOI:10.1104/pp.112.206086URL [本文引用: 1]

Matilla A J, Matilla-Vazquez M A . Involvement of ethylene in seed physiology
Plant Sci, 2008,175:87-97.

DOI:10.1016/j.plantsci.2008.01.014URL [本文引用: 3]

Ververidis P, John P . Complete recovery in vitro of ethylene- forming enzyme-activity
Phytochemistry, 1991,30:725-727.

DOI:10.1016/0031-9422(91)85241-QURL [本文引用: 1]

Murphy L J, Robertson K N, Harroun S G, Brosseau C L, Werner-Zwanziger U, Moilanen J, Tuononen H M, Clyburne J A C . A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion
Science, 2014,344:75-78.

DOI:10.1126/science.1250808URL [本文引用: 2]

叶永健, 宋松泉 . Fe 2+和CO2对番木瓜ACC氧化酶活性的影响
中山大学学报, 1997,36(2):18-21.

[本文引用: 1]

Ye Y J, Song S Q . Effect of Fe 2+ and CO2 on 1-aminocyclopropane-1-carboxylate oxidase from papaya (Carica papaya L.) fruit.
Acta Sci Nat Univ Sunyatseni, 1997,36(2):18-21.

[本文引用: 1]

Dong J G, Fernandezmaculet J C, Yang S F . Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit
Proc Natl Acad Sci USA, 1992,89:9789-9793.

DOI:10.1073/pnas.89.20.9789URL [本文引用: 1]

Song S Q, Ye Y J . Effect of O2, ACC and CO2 concentration on the activity of partially purified ACC oxidase from papaya
Acta Phytophysiol Sin, 2001,27:387-392.

[本文引用: 1]

Hudgins J W, Ralph S G, Franceschi V R, Bohlmann J . Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane- 1-carboxylate oxidase in resin duct and phenolic parenchyma cells
Planta, 2006,224:865-877.

DOI:10.1007/s00425-006-0274-4URL [本文引用: 1]

Ramassamy S, Olmos E, Bouzayen M, Pech J C, Latche A . 1-aminocyclopropane-1-carboxylate oxidase of apple fruitis periplasmic
J Exp Bot, 1998,49:1909-1915.

[本文引用: 1]

De Paepe A, Vuylsteke M, van Hummelen P, Zabeau M, van Der Staeten D . Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis
Plant J, 2004,39:537-559.

DOI:10.1111/tpj.2004.39.issue-4URL [本文引用: 1]

Van de Poel B, Bulens I, Hertog M L A T M, Nicolai B, Geeraerd A . A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms.
New Phytol, 2014,202:952-963.

[本文引用: 1]

Binder B M, Chang C, Schaller G E . Perception of ethylene by plants-ethylene receptors
Annu Plant Rev, 2012,44:117-145.

[本文引用: 2]

Stepanova A N, Alonso J M . Ethylene signaling and response: where different regulatory modules meet
Curr Opin Plant Biol, 2009,12:548-555.

DOI:10.1016/j.pbi.2009.07.009URL [本文引用: 4]

Merchante C, Alonso J, Stepanova A N . Ethylene signaling: simple ligand, complex regulation
Curr Opin Plant Biol, 2013, 16: 554?560.

[本文引用: 6]

Bakshi A, Piya S, Fernandez J C, Chervin C, Hewezi T, Bindera B M . Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses
Plant Physiol, 2018,176:910-929.

DOI:10.1104/pp.17.01321URL [本文引用: 1]

Ju C, Chang C . Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane.
AOB Plants, 2012, 2012: pls031. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1093/aobpla/pls031.

[本文引用: 2]

Shakeel S N, Wang X, Binder B M, Schaller G E . Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family
AOB Plants, 2013, 5: plt010. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1093/aobpla/plt010.

[本文引用: 1]

Chen Y F, Gao Z, Kerris R J, Wang W, Binder B M, Schaller G E . Ethylene receptors function as components of high-molecular- mass protein complexes in Arabidopsis
PLoS One, 2010,5:e8640. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.1371/journal.pone.0008640.

URL [本文引用: 1]

Gao Z, Wen C K, Binder B M, Chen Y F, Chang J, Chiang Y H, Kerris R J, Chang C, Schaller G E . Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis
J Biol Chem, 2008,283:23801-23810.

DOI:10.1074/jbc.M800641200URL [本文引用: 1]

Hirayama T, Kieber J J, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso J M, Dailey W P, Dancis A, Ecker J R . RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis
Cell, 1999,97:383-393.

DOI:10.1016/S0092-8674(00)80747-3URL [本文引用: 2]

Binder B M, Rodriguez F I, Bleecker A B . The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis
J Biol Chem, 2010,285:37263-37270.

DOI:10.1074/jbc.M110.170027URL [本文引用: 1]

Resnick J S, Wen C K, Shockey J A, Chang C . REVERSION-TO ETHYLENE SENSITIVITY 1, a conserved gene that regulates ethylene receptor function in Arabidopsis
Proc Natl Acad Sci USA, 2006,103:7917-7922.

DOI:10.1073/pnas.0602239103URL [本文引用: 1]

Dong C H, Rivarola M, Resnick J S, Maggin B D, Chang C . Subcellular colocalization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling
Plant J, 2008,53:275-286.

[本文引用: 1]

Resnick J S, Rivarola M, Chang C . Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis
Plant J, 2008,56:423-431.

DOI:10.1111/tpj.2008.56.issue-3URL [本文引用: 1]

Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J . Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk.
J Mol Biol, 2012,415:768-779.

[本文引用: 1]

Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R . EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
Science, 1999,284:2148-2152.

DOI:10.1126/science.284.5423.2148URL [本文引用: 1]

Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H . Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus
Cell Res, 2012,22:1613-1616.

DOI:10.1038/cr.2012.145 [本文引用: 3]

Cho Y H, Lee S, Yoo S D . EIN2 and EIN3 in ethylene signaling
Annu Plant Rev, 2012,44:169-187.

[本文引用: 1]

Bisson M M A, Groth G . New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2
Mol Plant, 2010,3:882-889.

DOI:10.1093/mp/ssq036URL [本文引用: 1]

An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker J R, Guo H . Ethylene-induced stabilization of ETHYLENE INSENSITIVE 3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis
Plant Cell, 2010,22:2384-2401.

DOI:10.1105/tpc.110.076588URL [本文引用: 2]

Ju C, Yoon G M, Shemansky J M, Lin D Y, Ying Z I, Chang J, Garrett W M, Kessenbrock M, Groth G, Tucker M L, Cooper B, Kieber J J, Chang C . CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis
Proc Natl Acad Sci USA, 2012,109:19486-19491.

DOI:10.1073/pnas.1214848109URL [本文引用: 4]

Qiao H, Shen Z, Huang S C, Schmitz R J, Urich M A, Briggs S P, Ecker J R . Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas
Science, 2012,338:390-393.

DOI:10.1126/science.1225974URL [本文引用: 2]

Chen R, Binder B M, Garrett W M, Tucker M L, Chang C, Cooper B . Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene.
Mol Biosyst, 2011,7:2637-2650.

[本文引用: 1]

Ji Y, Guo H . From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling
Mol Plant, 2013,6:11-14.

DOI:10.1093/mp/sss150URL [本文引用: 1]

Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M . A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato
J Exp Bot, 2012,63:427-439.

DOI:10.1093/jxb/err289URL [本文引用: 1]

Chang K N, Zhong S, Weirauch M T, Hon G, Pelizzola M, Li H, Huang S S C, Schmitz R J, Urich M A, Kuo D, Nery J R, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes T R, Ecker J R . Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis
eLife, 2013,2:e00675. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.7554/eLife.00675.

URL [本文引用: 1]

Chen Y F, Shakeel S N, Bowers J, Zhao X C, Etheridge N, Schaller G E . Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis
J Biol Chem, 2007,282:24752-24758.

DOI:10.1074/jbc.M704419200URL [本文引用: 1]

Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D . Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation
Proc Natl Acad Sci USA, 2004,101:6803-6808.

DOI:10.1073/pnas.0401698101URL [本文引用: 2]

Qiao H, Chang K N, Yazaki J, Ecker J R . Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis
Genes Dev, 2009,23:512-521.

DOI:10.1101/gad.1765709URL [本文引用: 3]

Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P . EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2
Cell, 2003,115:679-689.

DOI:10.1016/S0092-8674(03)00968-1URL [本文引用: 1]

Konishi M, Yanagisawa S . Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3
Plant J, 2008,55:821-831.

DOI:10.1111/tpj.2008.55.issue-5URL [本文引用: 1]

Kevany B M, Tieman D M, Taylor M G, Cin V D, Klee H J . Ethylene receptor degradation controls the timing of ripening in tomato fruit
Plant J, 2007,51:458-467.

DOI:10.1111/j.1365-313X.2007.03170.xURL [本文引用: 1]

Fu J R, Yang S F . Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1- carboxylic acid during germination
J Plant Growth Regul, 1983,2:185-192.

DOI:10.1007/BF02042247URL [本文引用: 1]

Siriwitayawan G, Geneve R L, Downie A B . Seed germination of ethylene perception mutants of tomato and Arabidopsis
Seed Sci Res, 2003,13:303-314.

DOI:10.1079/SSR2003147URL [本文引用: 1]

K?pczyński J, Sznigir P . Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels.
Acta Physiol Plant, 2014,36:1463-1472.

[本文引用: 3]

Van de Poel, Smet D, Van Der Straeten D . Ethylene and hormonal cross talk in vegetative growth and development
Plant Physiol, 2015,169:61-72.

DOI:10.1104/pp.15.00724URL [本文引用: 1]

Wood L A, Kester S T, Geneve R L . The physiological basis for ethylene-induced dormancy release in three Echinacea species with special reference to the influence of the integumentary tapetum.
Sci Hortic, 2013: 156:63-72.

[本文引用: 1]

Lin Y, Yang L, Paul M, Zu Y, Tang Z . Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium niroprusside
Plant Physiol Biochem, 2013,73:211-218.

DOI:10.1016/j.plaphy.2013.10.003URL [本文引用: 1]

Silva P O, Medina E F, Barros R S, Ribeiro D M . Germination of salt-stressed seeds as related to ethylene biosynthesis ability in three Stylosanthes species.
J Plant Physiol, 2014,171:14-22.

[本文引用: 1]

Sinska I . Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos
Plant Sci, 1989,64:39-44.

DOI:10.1016/0168-9452(89)90149-0URL [本文引用: 1]

Corbineau F, C?me D. Germination of sunflower seeds as related to ethylene synthesis and sensitivity: an overview. In: Vendrell M, Klee H, Pech J C, Romojaro F, eds. Biology and Biotechnology of the Plant Hormone Ethylene III. Amsterdam: IOS Press, 2003. pp 216-221.
[本文引用: 3]

Ribeiro D M, Barros R S . Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis.
Seed Sci Res, 2006,16:37-45.

[本文引用: 1]

Gniazdowska A, Krasuska U, Bogatek R . Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway
Planta, 2010,232:1397-1407.

DOI:10.1007/s00425-010-1262-2URL [本文引用: 1]

Argyris J, Dahal P, Hayashi E, Still D W, Bradford K J . Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes
Plant Physiol, 2008,148:926-947.

DOI:10.1104/pp.108.125807URL [本文引用: 2]

Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machá?ková I M, Fischer U, Leubner-Metzger G . 1-Amynocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.
J Exp Bot, 2007,58:3047-3060.

[本文引用: 1]

Krasuska U, Ciacka K, Debska K, Bogatek R, Gniazdowska A . Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.
J Plant Physiol, 2014,171:1132-1141.

[本文引用: 1]

Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C . Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway
J Exp Bot, 2008,59:2241-2251.

DOI:10.1093/jxb/ern089URL [本文引用: 2]

Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Kermode A R . The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during main tenance of seed dormancy, moist-chilling and germination.
Plant J, 2005,42:35-48.

[本文引用: 5]

Subbiah V, Reddy K J . Interactions between ethylene, abscisisc acid and cytokinin during germination and seedling establishment in Arabidopsis
J Biosci, 2010,35:451-458.

DOI:10.1007/s12038-010-0050-2URL [本文引用: 3]

Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X . Arabidopsis EIN2 modulates stress response through abscisic acid response pathway
Plant Mol Biol, 2007,64:633-644.

DOI:10.1007/s11103-007-9182-7URL [本文引用: 3]

Jimenez J A, Rodriguez D, Calvo A P, Mortensen L C, Nicolas G, Nicolas C . Expression of a transcription factor (FsERF1) involved in ethylene signaling during the breaking of dormancy in Fagus sylvatica seeds.
Physiol Plant, 2005,125:373-380.

[本文引用: 1]

Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta M T, Tournier B, Khalil-Ahmad Q, Regad F, Latché A, Pech J C, Bouzayen M . Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination
Plant Cell Physiol, 2006,47:1195-1205.

DOI:10.1093/pcp/pcj084URL [本文引用: 1]

Cadman C S C, Toorop P E, Hilhorst H W M, Finch-Savage W E . Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism
Plant J, 2006,46:805-822.

DOI:10.1111/tpj.2006.46.issue-5URL [本文引用: 1]

Linkies A, Müller K, Morris K, Ture?ková V, Wenk M, Cadman C S C, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G . Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana.
Plant Cell, 2009,21:3803-3822.

[本文引用: 6]

Nonogaki H . Seed dormancy and germination-emerging mechanism and new hypotheses
Front Plant Sci, 2014,e5:233. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2014.00233.

[本文引用: 2]

Liu X, Hou X L . Antagonistic regulation of ABA and GA in metabolism and signaling pathways
Front Plant Sci, 2018,9:251. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2018.00251.

URL [本文引用: 1]

Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q . Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination
Plant Growth Regul, 2012,66:191-202.

DOI:10.1007/s10725-011-9643-5URL [本文引用: 1]

Dong Z, Yu Y, Li S, Wang J, Tang S, Huang R . Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis.
Mol Plant, 2016,9:126-135.

[本文引用: 2]

Penfield S, Li Y, Gilday A D, Graham S, Graham I A . Arabidopsis ABA INSENSITIVE 4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm
Plant Cell, 2006,18:1887-1899.

DOI:10.1105/tpc.106.041277URL [本文引用: 2]

Cheng W H, Chiang M H, Hwang S G, Lin P C . Antagonism between abscisic acid and ethylene in Arabidopsis acts inparallel with the reciprocal regulation of their metabolism and signaling pathways
Plant Mol Biol, 2009,71:61-80.

DOI:10.1007/s11103-009-9509-7URL [本文引用: 3]

Kucera B, Cohn M A, Leubner-Metzger G . Plant hormone interactions during seed dormancy release and germination
Seed Sci Res, 2005,15:281-307.

DOI:10.1079/SSR2005218URL [本文引用: 1]

Beaudoin N, Serizet C, Gosti F, Giraudat J . Interactions between abscisic acid and ethylene signaling cascades
Plant Cell, 2000,12:1103-1115.

DOI:10.1105/tpc.12.7.1103URL [本文引用: 1]

Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez J A, Nicolas G, Nicolas C . Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation.
Planta, 2011,234:589-597.

[本文引用: 1]

Calvo A P, Nicolas C, Lorenzo O, Nicolas G, Rodriguez D . Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds.
J Plant Growth Regul, 2004,23:44-53.

[本文引用: 2]

Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S . Gibberellin biosynthesis and response during Arabidopsis seed germination
Plant Cell, 2003,15:1591-1604.

DOI:10.1105/tpc.011650URL [本文引用: 2]

Calvo A P, Nicolas C, Nicolas G, Rodriguez D . Evidence of a crosstalk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds.
Physiol Plant, 2004,120:623-630.

[本文引用: 2]

Lorenzo O, Rodriguez D, Nicolas C, Nicolas G. Characterization and expression of two protein kinase and an EIN3-like genes, which are regulated by ABA and GA3 in dormant Fagus sylvatica seeds. In: Black M, Bradford K J, Vazquez-Ramos J, eds. Seed Biology: Advances and Applications. Wallingford: CAB International, 2000. pp 329-340.
[本文引用: 1]

Davière J M, Achard P . Gibberellin signaling in plants
Development, 2013,140:1147-1151.

DOI:10.1242/dev.087650URL [本文引用: 1]

Dill A, Thomas S G, Steber C M, Sun T P . The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation
Plant Cell, 2004,16:1392-1405.

DOI:10.1105/tpc.020958URL [本文引用: 1]

Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd N P . The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes
Proc Natl Acad Sci USA, 2007,104:6484-6489.

DOI:10.1073/pnas.0610717104URL [本文引用: 1]

Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L . The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity
Plant Cell, 2008,20:2729-2745.

DOI:10.1105/tpc.108.061515URL [本文引用: 1]

Schwechheimer C . Understanding gibberellic acid signaling: are we there yet?
Curr Opin Plant Biol, 2008,11:9-15.

DOI:10.1016/j.pbi.2007.10.011URL [本文引用: 1]

Zhang J, Yu J, Wen C-K . An alternate route of ethylene receptor signaling
Front Plant Sci, 2014,5:648. doi: http://zwxb.chinacrops.org/article/2019/0496-3490/10.3389/fpls.2014.00648.

[本文引用: 1]

Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y . Abscisic acid and the control of seed dormancy and germination
Seed Sci Res, 2010,20:55-67.

DOI:10.1017/S0960258510000012URL [本文引用: 1]

Liu S J, Song S H, Wang W Q, Song S Q . De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing
Plant Physiol Biochem, 2015,96:154-162.

DOI:10.1016/j.plaphy.2015.07.020URL [本文引用: 1]

Wang W Q, Song B Y, Deng Z J, Wang Y, Liu S J, M?ller I M, Song S Q . Proteomic analysis of Lactuca sativa seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by PEG fractionation.
Plant Physiol, 2015,167:1332-1350.

[本文引用: 1]

Xu H H, Liu S J, Song S H, Wang W Q, M?ller I M, Song S Q . Proteome changes associated with dormancy release of Dongxiang wild rice seeds
J Plant Physiol, 2016,206:68-86.

DOI:10.1016/j.jplph.2016.08.016URL [本文引用: 1]

相关话题/种子 信号 植物 生物 基因

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缂佺姷濞€閺岀喖骞戦幇闈涙闁荤喐鐟辩粻鎾诲箖濡ゅ懏鏅查幖绮光偓鎰佹交闂備焦鎮堕崝宥囨崲閸儳宓侀柡宥庣仈鎼搭煈鏁嗛柍褜鍓氭穱濠囨嚃閳哄啯锛忛梺璇″瀻娴i晲鍒掗梻浣告惈鐞氼偊宕濋幋锕€绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷�2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墦濮婃椽妫冨☉姘辩杽闂佺ǹ锕ラ悧鐘诲箖閿熺姵鍋勯柛蹇氬亹閸欏棝姊洪崫鍕妞ゃ劌鎳忕粋宥夊箚瑜滃〒濠氭煏閸繄绠版い鈺婂墴閺屸剝鎷呴崜鑼悑闂佺粯渚楅崳锝呯暦濮椻偓閸╋繝宕橀悙顒傘偒闂備浇顕ч崙鐣岀礊閸℃稑纾婚柟鐑樺殾濞戙垹绀冮柕濞垮灪閺傗偓闂備胶绮崝鏍п缚濞嗘挻鍊堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸洖纾块柤纰卞墯瀹曞弶绻涢幋娆忕仼缂佺媴缍侀弻锝夊箛閳轰礁顬嬬紓浣稿綁閸楀啿顫忛搹鍦<婵☆垳鍎ょ拠鐐烘⒑鐞涒€充壕闂備緡鍓欑粔瀛橆攰闂備礁鎲″ú锕傚垂婵傜ǹ鏋侀柛鎰靛枟閻撳繘鐓崶褝鏀绘繛鍛嚇閺屾盯骞樼拋铏枤濠殿喖锕ュ浠嬬嵁閹邦厽鍎熼柨婵嗗€搁~宀勬⒒娴e憡鍟炴慨濠傜秺閹兘鍩¢崨顔间粧濡炪倖妫冮弫顕€宕戦幘缁樻櫜閹肩补鍓濋悵顕€姊烘潪鎵槮缂佸鏁搁幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垿顢撳☉妯锋斀闁炽儱鍟跨痪褔鏌熺粙鍨毐妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閸涘﹦娲存繛浣冲喛鑰块梺顒€绉寸粻鏌ユ煏韫囧鈧洜绮诲☉娆嶄簻闁哄倸鐏濋埛鏃堟煟閹炬剚鍎旀慨濠呮缁辨帒螣閾忛€涚礃婵犵妲呴崑鍕偓姘緲閻g柉銇愰幒鎴狅紲闂佺粯鍔曢顓㈠储闁秵鍊甸柛蹇擃槸娴滈箖姊洪柅鐐茶嫰婢у鈧娲橀崹鍧楀箖濞嗘挸浼犻柛鏇ㄥ弿缁遍亶姊绘笟鈧ḿ褑澧濋梺鍝勬噺缁捇骞冮敓鐘参ㄩ柍鍝勫€婚崢浠嬫⒑閸濆嫭宸濋柛瀣洴閸┾偓妞ゆ巻鍋撴繝鈧柆宥呯劦妞ゆ帊鑳堕崯鏌ユ煙閸戙倖瀚�
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繐霉閸忓吋缍戦柛銊ュ€婚幉鎼佹偋閸繄鐟查梺绋款儏椤︾敻寮婚弴锛勭杸閻庯綆浜栭崑鎾诲即閵忊€斥偓宄扳攽閻樻彃顏柛鐘冲姉閳ь剙绠嶉崕鍗炍涘▎鎾崇煑闊洦绋掗悡蹇涙煕椤愶絿绠ユ俊鎻掔秺閺屽秹鏌ㄧ€n亞浼岄梺鍝勬湰缁嬫垿鍩ユ径濠庢建闁割偅绻€缁憋絿绱撻崒娆戝妽妞ゃ劌妫涢弫顔嘉旀担琛℃敵婵犵數濮村ù鍌炲极閸愵喗鐓ユ繝闈涙婢跺嫰鏌涢幒鎾垛槈妞ゎ亜鍟存俊鍫曞礃閵娧傜棯婵犵妲呴崑鍕疮椤栫偛绠為柕濞炬櫅閻掑灚銇勯幒鎴濐仾闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺鎸庣☉缁夊灚绌辨繝鍥舵晝闁靛繒濯导鍐⒑閸濆嫮鐒跨紒鏌ョ畺楠炲棝寮崼顐f櫖濠电姴锕ら幉娑㈡晲婢跺鎷洪梺鍛婄缚閸庤鲸鐗庨梻浣虹帛椤ㄥ牊鎱ㄩ幘顔藉仼闁绘垼妫勯~鍛存煏閸繃鍣芥い鏃€甯掗—鍐Χ閸℃ǚ鎷婚梺鍝勬媼閸嬪﹤鐣烽姀銈呯濞达絽鍘滈幏娲⒑閸涘﹦鈽夐柨鏇樺劤缁牏鈧綆鍋嗙粻鎯归敐鍛毐婵炶绠撳畷鎰板醇閺囩喓鍙嗗┑鐘绘涧濡瑩藟閹捐秮鐟扳堪閸曨厾鐓夐梺鍝勭灱閸犳捇鍩€椤掍胶鈯曞畝锝堟硶缁寮借閻斿棝鎮归崫鍕儓妞ゅ浚鍋嗙槐鎺撴綇閵娿儳顑傞梺閫炲苯澧剧紓宥呮缁傚秶鎹勬担鏇犲枛閸┾偓妞ゆ帒瀚埛鎴犵磼椤栨稒绀冮柡澶婄秺閺屾稓鈧綆鍋呯亸顓熴亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閳ь剙岣块幋锔解拺缂佸顑欓崕鎰版煙閻熺増鍠樼€殿喛顕ч濂稿炊閵娿儳褰撮梻浣告惈鐞氼偊宕曢崡鐑嗗殨闁哄绨遍弨浠嬫煥閻斿搫啸闁伙絽鎼湁婵犲﹤鍟伴崺锝団偓娈垮枦椤曆囶敇婵傜ǹ閱囨い鎰剁秵閳ь剙娲缁樻媴閸涘﹤鏆堥梺鍦归…鐑藉箖閻戣棄鐓涘ù锝囧劋濞堟儳顪冮妶鍡欏缂佸鍨块、姘舵焼瀹ュ棗鈧灚绻涢幋鐑嗕痪妞ゅ繐鎳愰々鍙夈亜閺嶃劌鐒归柡鈧禒瀣厽闁归偊鍓欑痪褔鏌嶇紒妯荤闂囧绻濇繝鍌氼伀缂佺姷鍋熼埀顒侇問閸犳鎮¢敓鐘偓浣肝旈崨顓狀槹濡炪倖宸婚崑鎾绘煃瑜滈崜娆撴偉婵傜ǹ钃熼柨婵嗩槸缁犳稒銇勯弮鍥撴慨锝呭濮婅櫣娑甸崨顕呮闂佺ǹ锕ゅḿ鈥愁嚕鐠囨祴妲堥柕蹇曞瑜旈弻娑㈠Ψ椤斿彞铏庨梺闈涚箞閸婃牠藟閸℃鐔嗛悹杞拌閸庢垹绱掗埦鈧崑鎾斥攽閻樺灚鏆╁┑顔芥尦瀹曟劙骞栨担鍛婅緢闂佹寧绻傚Λ搴㈢濠婂牆绠规繛锝庡墮閻掔儤绻涢崼鐔哥闁哄本娲熷畷鎯邦槻妞ゅ浚鍙冮弻娑㈠煛閸愩劋妲愬銈冨灪閿曘垽骞冨▎蹇e晠妞ゆ棁宕靛Λ顖涚節閻㈤潧校妞ゆ梹鐗犲畷褰掓焼瀹ュ懐顔囬梺瑙勫劶濡嫰鎷戦悢鍏肩叆闁绘柨鎼瓭闂佺粯鍔曢敃顏堝蓟瀹ュ棙濮滈柟娈垮枛婵′粙姊虹拠鑼缂佽埖鑹鹃~蹇撁洪鍕獩婵犵數濮寸€氼參宕板☉銏♀拺缂佸顑欓崕鎰版煙閻熺増鎼愭い顐㈢箳缁辨帒螣鐠囧樊鈧捇姊洪崨濠勭細闁稿氦娅曢〃娆忊攽閻樺灚鏆╅柛瀣耿瀹曠娀鎮╃拠鎻掕€块梺褰掑亰娴滄繈鎯堣箛娑欌拻濞达綀娅g敮娑㈡煕閺冣偓椤ㄥ﹤顕i锕€浼犻柕澹倻鐟濋梻浣告惈閸燁偊鎮ф繝鍥ㄥ亗婵炲棙鎸婚悡娆愩亜閺嵮勵棞闁兼椿鍨伴埢鎾诲醇閺囩啿鎷洪悗瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵¢攱鎯旈敐鍛亖闂佸綊顥撴繛鈧鐐存崌楠炴帒鈹戦崶銊с偘闂傚倸鍊搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧湱鎲歌箛鏇炲灊濠电姵鑹剧粻濠氭偣閸ヮ亜钄奸柟鑺ユ礋濮婅櫣绱掑Ο娲绘⒖濠电偛鎷戠紞渚€骞嗙仦瑙f瀻闁规儳顕崢鐢电磽娴e壊鍎忛柣蹇旂箞椤㈡濮€閵堝棛鍘靛銈嗘⒒閺咁偊骞婇崶銊﹀弿濠电姴瀚崝瀣倵閻㈤潧甯堕柍璇查叄楠炲鎮╁Ο鑽ょ煂缂佽鲸鎸婚幏鍛村传閸曟埊缍侀弻锝呂旀担鍦槹濡炪們鍨哄畝鎼佸极閹邦厼绶炴俊顖滅帛濞呭洭姊绘担绋挎毐闁诲繐鐗撳鎻掆堪閸喎鈧潧鈹戦悩宕囶暡闁抽攱鍨归幉鎼佹偋閸繄鐟ㄦ繛瀛樼矆閸楁娊寮诲☉妯滅喖宕崟銊﹀瘱缂傚倷绶¢崰妤呮偡閳轰胶鏆﹂柣鏃傗拡閺佸秵绻涢幋鐐茬瑲閻庢艾銈稿缁樻媴閸涘﹨纭€闁哄浜濈换娑氣偓鐢登归崢鎾煕閳瑰灝鍔滅€垫澘瀚伴獮鍥敇閻樻彃绠伴梻鍌欑婢瑰﹪宕戦幒妤€纾婚柛鏇ㄥ墯濞呯娀鎮楅悽鐢点€婇柛瀣尵閹叉挳宕熼鍌ゆК缂傚倸鍊哥粔鎾晝閵夛妇鈹嶅┑鐘插亞濞兼壆鈧厜鍋撳┑鐘插敪椤忓嫧鏀介柣妯诲墯閸熷繘鏌涢妸銈呭祮濠碘€崇埣楠炴牗鎷呭灞炬啺婵犵數鍋為崹鎯板綔濠碘剝褰冮悧濠囧箞閵娿儙鏃堝焵椤掑嫭鍋嬪┑鐘叉搐閺嬩線鏌涢幘妤€鎳愰敍婵囩箾鏉堝墽鍒伴柟纰卞亝閻楀酣姊哄Ч鍥х労闁搞劍濞婂畷鎴﹀Χ婢跺﹥妲梺閫炲苯澧柕鍥у楠炴帡宕卞鎯ь棜闂傚倷娴囬褏鎹㈤幋锔藉殞濡わ絽鍟犻埀顒婄畵瀹曞綊顢氶崨顔肩紦闂備線鈧偛鑻晶瀛橆殽閻愭彃鏆㈡い锕€婀遍埀顒冾潐濞叉牕鐣烽鍕畳闂備礁鎼ˇ鎵偓绗涘洤绐楁俊顖氱毞閸嬫挾鎲撮崟顒傤槶闁哄浜幗鍫曞冀椤€崇秺閺佹劖寰勭€n偆褰搁梻浣圭湽閸庣儤绂嶉鍕垫綎缂備焦蓱婵潙銆掑鐓庣仭闁轰緡鍨跺铏规喆閸曨兙浠ф繛瀛樼矤娴滄粓锝炶箛鏃傤浄閻庯綆浜為ˇ鏉款渻閵堝棛澧紒瀣笒閳诲秹寮介鐔叉嫼闂佸憡绻傜€氼噣鍩㈡径鎰厱婵☆垰婀遍惌娆撴煙椤旀瑣鍊楅悿鈧┑鐐村灦閻熝囧储闁秵鈷戦柡鍌樺劜濞呭懘鏌涢悤浣哥仯缂侇喖鐗撻崺鈧い鎺嗗亾妞ゎ亜鍟存俊鎯扮疀閺囩偟鐓楅梻浣告惈濡瑧绮╃化鏉戔攽閻樺灚鏆╁┑顔惧厴瀵偊宕ㄦ繝鍐ㄥ伎婵炴潙鍚嬪ḿ娆撳垂閸岀偞鐓曢柨鏃囶嚙楠炴ḿ绱掗埀顒佺節閸屾鏂€闂佺粯锚瀵爼骞栭幇鐗堢厽闁圭儤鍨规禒娑㈡煏閸パ冾伃妤犵偞甯掗濂稿醇濠靛棗鑵愰梻鍌欑劍閸撴岸宕归崡鐏绘椽鎮㈤悡搴ゆ憰闂佸搫娲㈤崹褰掔嵁閵忊€茬箚闁靛牆鍊告禍楣冩⒑閸濆嫭锛旂紓宥勭窔瀵鏁嶉崟顏呭媰闂佸憡鎸嗛崟顐㈢仭濠德板€楁慨鐑藉磻閻愬灚鏆滈柨鐔哄Х瀹撲線鎮楅敐搴℃灍闁稿﹤顭烽弻娑㈠焺閸愬じ绶靛┑鈽嗗€ら崘锝嗘杸闂佹寧绋戠€氼剚绂嶆總鍛婄厱濠电姴鍟版晶閬嶆煛娓氬洤娅嶉柟顔界懇瀹曨偊宕熼鐘茬倞闂傚倷绀佺紞濠囧磻婵犲洤绐楁慨妯垮煐閸庢绻涢崱妤冪畾闁衡偓娴犲鐓熸俊顖氭惈缁狙冾熆鐠哄搫顏柡灞剧〒閳ь剨缍嗛崑鍕叏瀹ュ鐓涚€光偓鐎n剛袦婵犳鍠掗崑鎾绘⒑闂堟稓绠氶柛鎾寸箓琚欓柛鏇ㄥ灡閻撴稑霉閿濆懏鎲稿褝闄勯幈銊︾節閸曨厼绗¢梺鐟板槻閹虫劗鍒掑▎鎾崇閹肩补妾ч崑鎾活敍濮橈絾鏂€闂佺粯锕╅崰鏍倶椤忓牊鐓ラ柡鍥悘鈺呮煟閿濆洤鍘存い銏$☉閳藉顫滈崱妤侇啌闂備浇顕х€涒晝绮欓幒妤佹櫔濠电偛鐡ㄧ划鐘诲垂鐠轰警娼栨繛宸簻瀹告繂鈹戦悩鎻掝伀闁伙絽鐏氱换婵嗏枔閸喚浠存俊鐐茬摠閹倿鐛崱娑樼睄闁割偅绻嶅ḿ濠囨⒑閹稿海鈽夐悗姘煎枦閸婂瓨绻濈喊澶岀?闁稿鍨垮畷鎰板冀椤撶偟顦┑掳鍊曢幊搴g玻濡ゅ懎绠规繛锝庡墮閻忣喗銇勯埡鍌氱祷閾绘牠鏌ㄥ┑鍡樺櫣闁哄棛鍋ら弻锝夊箻鐎靛憡鍒涢梺鍝勬湰閻╊垱淇婇悜鑺ユ櫜闁告侗鍙庨悗鎾⒒娴e湱婀介柛鏂跨Ч瀹曞綊宕稿Δ鈧拑鐔兼煥濠靛棭妲归柛瀣閺屾稑鈻庤箛锝喰ч梺缁樼箖濡啫顫忛搹鍏夊亾閸︻厼校妞ゃ儱顦伴妵鍕晜閻愵剚姣堥梺缁樹緱閸犳牞鐏掗梺鍏肩ゴ閺呮繈藝閳哄懏鈷戠紓浣光棨椤忓嫮鏆︽い鎺戝閺佸棝鏌曡箛濞惧亾閼碱剛鐣鹃梻浣虹帛閸旓附绂嶅⿰鍫濈劦妞ゆ帊鑳舵晶顏堟偂閵堝棛绡€闂傚牊绋掗ˉ鎴︽煛鐎n亞效闁哄矉绻濆畷鍫曞煛娴i攱鍠氱紓鍌氬€搁崐鐟扮暆閹间焦鍋傛い鎰剁畱閻愬﹪鏌曟繛褉鍋撴俊鎻掔墦閹鎮烽悧鍫濇殘缂備浇顕ч崯瀛樹繆閻㈢ǹ绀嬫い鏍ㄦ皑椤旀帒鈹戞幊閸婃劙宕戦幘缁樼厱闁绘洑绀侀悘锔姐亜閵忥紕鎳囬柡浣规崌閺佹捇鏁撻敓锟�20濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻锝夊箣閿濆棭妫勭紒鐐劤椤兘寮婚敐鍛傜喎鈻庨幆褎顔勭紓鍌欒兌婵挳鎮樺璺何﹂柛鏇ㄥ枤閻も偓闂佸湱鍋撻幆灞轿涢垾鎰佹富闁靛牆楠告禍婵囩箾閸欏缂氶柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏ョ€规洦鍓熷畷婊堝箥椤斿墽锛濇繛杈剧到閹碱偅鐗庨梻浣规偠閸斿苯岣块垾鎰佸殨濠电姵鑹惧洿闂佺硶鍓濋敋鐎殿喖娼″楦裤亹閹烘垳鍠婇梺绋跨箲閿曘垹鐣烽幋锕€绠绘繝銏犲濡啴宕洪埀顒併亜閹烘垵顏╅柣鎾寸箞閺岋繝宕橀妸褍顣哄銈庡亜閹虫﹢寮婚敐鍛傜喖鎮滃鍡橈骏闂備胶顢婂▍鏇㈠箲閸ヮ剙围妞ゅ繐鎳庨閬嶆煛婢跺鐏╂い锔哄姂濮婃椽宕橀崣澶嬪創闂佹寧娲忛崕鐢稿极瀹ュ宸濇い鏍ㄧ矌閿涙繈姊虹粙鎸庢拱闁荤啙鍥佸洭鏁傛慨鎰盎闂佹寧妫侀褔鎮橀敂濮愪簻闁靛繆鈧啿鎽靛銈冨灪閿曘垺鎱ㄩ埀顒勬煟濮椻偓濞佳勬叏閿旀垝绻嗛柣鎰典簻閳ь剚鐗曢蹇旂節濮橆剛锛涢梺瑙勫劤椤曨厾寮ч埀顒勬⒑闁偛鑻晶鎾煛鐏炶姤顥滄い鎾炽偢瀹曘劑顢涢妶鍥ц€块梻鍌氬€烽懗鍓佸垝椤栨凹娼栧┑鐘宠壘閸屻劎鎲搁弬娆惧殨闁告稑锕﹂悷褰掓煃瑜滈崜鐔奉嚕婵犳艾鍗抽柕蹇曞█閸炶泛鈹戦悩鑼粵闁告梹鐗楅弲銉╂⒒閸屾瑨鍏岄弸顏勎旈悩鍙夋喐缂侇喗妫侀妵鎰板箳閹达絾鎲版繝鐢靛仦閸垶宕硅ぐ鎺戠闁规儼濮ら悡蹇撯攽閻愯尙浠㈤柛鏃€纰嶉妵鍕敃閻斿憡鐝氬┑顔硷功閸庛倗鈧數鍘ч埢搴ㄥ箣閻樿櫕顔忕紓鍌氬€搁崐鍝ョ矓閹绢喗鏅濇い蹇撶墢瀹撲線鏌涢幇鈺佸闁哄啫鐗嗙粈鍐煃鏉炴壆鍔嶉柣搴弮濮婄粯鎷呴崨濠傛殘濠电偠顕滅粻鎾崇暦閿濆棙鍎熼柕濞垮劜鏉堝牓姊虹捄銊ユ灁濠殿喚鏁婚崺娑㈠箣閿旂晫鍘卞┑鐘绘涧濡顢旈鍛簻闁靛绠戦悘鎾煛鐏炲墽銆掗柍褜鍓ㄧ紞鍡涘磻閸涱厾鏆﹂悘鐐靛亾閸欏繐鈹戦悩鎻掓殲闁靛洦绻勯埀顒冾潐濞诧箓宕戞繝鍌滄殾闁绘梻鍘ч崹鍌涖亜閹邦剝鐧侀柛銉e妷閹锋椽姊洪崨濠勨槈闁挎洏鍎甸崺娑㈠箛閻楀牏鍘藉┑掳鍊曢崯顐﹀煝閸噥娈介柣鎰絻閺嗭綁鏌℃担瑙勫磳闁诡喒鏅犻幖褰掝敃閿濆洤寤洪梻鍌氬€风粈渚€骞夐垾瓒佹椽鏁冮崒姘鳖槶濠电偛妫欓幐濠氬磻閻旇褰掓偂鎼达絾鎲奸梺鎶芥敱閸ㄥ灝顫忔繝姘唶闁绘梹浜介埀顒佸笧缁辨帡鎮╅崘鎻掓懙闂佸搫鏈惄顖炵嵁濡皷鍋撻棃娑欐喐闁汇倕瀚板铏规嫚閳ヨ櫕鐏€闂侀€炲苯澧柡瀣偢瀵憡鎯旈妸锔惧幍闂備緡鍙忕粻鎴﹀几閵堝棎浜滈柡鍐e亾婵炲弶岣块幑銏犫攽鐎n亶娼婇梺鎸庣箓濡盯濡撮幇顒夋富闁靛牆妫楅悘銉︿繆椤愶絿銆掗柛鎺撳浮瀹曞ジ濡烽妷褍濮︽俊鐐€栫敮鎺斺偓姘煎弮瀹曟劙宕归銈囶啎闂佸壊鍋呯换鍕閵忥紕绠鹃柛娑卞幘鏁堥梺鍝勭焿缁绘繈宕洪埀顒併亜閹烘垵顏╃痪顓涘亾闂備胶绮崹闈浳涘Δ鈧埢鎾活敃閿旇В鎷洪梺鍛婄☉閿曘儲寰勯崟顖涚厱閻庯綆鍋勫ù顔锯偓瑙勬磸閸庢娊鍩€椤掑﹦绉甸柛鐘愁殜閹繝寮撮姀锛勫幐闂佹悶鍎崕杈ㄤ繆閸忕⒈娈介柣鎰懖閹寸偟鈹嶅┑鐘叉搐閻顭跨捄鐚村姛濞寸厧鑻埞鎴︻敊绾攱鏁惧┑锛勫仩濡嫰鎮鹃悜绛嬫晝闁挎洍鍋撶紒鈧€n偁浜滈柟閭﹀枛閺嬪骸霉濠婂嫬鍔ら棁澶愭煟濡儤鈻曢柛搴㈢矌缁辨挸顓奸崱娆忊吂濡炪値鍙€濞夋洟骞戦崟顖涘€绘俊顖滅帛鐎氭娊姊绘担鍛靛湱鎹㈤幋鐘插灊闁规崘顕ч拑鐔哥箾閹存瑥鐒洪柡浣稿暣閺屻劌鈹戦崱姗嗘¥濡炪倧璐熼崝鎴濐潖濞差亜浼犻柛鏇ㄥ墮椤庢盯姊洪崨濠冨暗闁哥姵鐗犻悰顕€宕橀…鎴炲缓闂侀€炲苯澧存鐐插暙閳诲酣骞橀幖顓燁棃婵犵數鍋為崹鍫曘€冮崨姝ゅ顫濇潏鈺冿紳闂佺ǹ鏈悷銊╁礂鐏炶В鏀芥い鏃傚亾閺嗏晠鏌℃笟鍥ф珝闁搞劑绠栭獮鍥ㄦ媴閸︻厾鈻夋繝鐢靛Х閺佸憡鎱ㄩ悽鍛婂殞濡わ絽鍟崐宄扳攽閻樺弶澶勯柣鎾卞劜缁绘繈妫冨☉娆樻!闂侀潻绲挎灙妞ゎ叀娉曢幉鎾礋椤掑偆妲规繝娈垮枛閿曘儱顪冩禒瀣疇闁跨喓濮村洿闂佸憡渚楅崰姘跺焵椤掍礁鍔ら柍瑙勫灴閹瑩骞撻幒鏃堢崜闂備焦鎮堕崝灞结缚閿熺姷宓佸┑鐘蹭迹閺冨牆绀冮柍杞拌兌閿涘繘姊洪懡銈呬沪缂佸鐗撳畷婊冣攽鐎n偄鈧泛銆掑锝呬壕濠殿喖锕ㄥ▍锝呪槈閻㈢ǹ宸濇い鏂垮悑闁款參姊婚崒姘偓鍝モ偓姘煎墰閳ь剚纰嶅姗€鎮鹃悜钘夊嵆闁靛繒濮烽娲⒑閹稿孩顥嗘俊顐㈠閸┾偓妞ゆ帒鍊归弳顒勬煛鐏炶濡奸柍瑙勫灴瀹曞崬鈽夐幍浣镐壕婵°倓绶″▓浠嬫煟閹邦喗顬嬬紓鍌涙皑缁辨帗娼忛妸銉﹁癁闂佽鍠掗弲娑㈡偩閻戣棄鐐婄憸澶愬箯娴煎瓨鈷掑ù锝呮啞閹牆顭跨捄鐑樺枠鐎规洘绮岄埞鎴﹀幢閳轰焦顔傞梻浣告啞濞诧箓宕戦埀顒佷繆閹绘帞澧涚紒缁樼洴瀹曞崬螖娴d警娲跺┑鐐差嚟閵嗗骞忛敓锟�