摘要种植模式和氮肥水平直接影响作物的生长和氮素的吸收, 无损、即时监测大豆叶片氮素水平对大豆生产中的氮肥精确管理十分重要。本研究设置4个氮肥水平, 分析单作套作下大豆在不同生育时期叶片氮素动态和光谱特征, 明确对叶片氮素敏感的光谱特征参数, 构建单作套作大豆通用的叶片氮素积累量估测模型。结果表明, 随大豆生育时期的推进, 单作套作种植模式下的大豆冠层叶片氮素积累量均呈现单峰变化趋势, 最大值出现在N3处理下的结荚期, 两种模式两年最大值平均分别为8.70 g m-2和8.38 g m-2; 不同生育时期和种植模式的大豆冠层原始反射光谱的变化规律与冠层叶片氮素变化规律均为先增加后降低, 原始反射光谱在700~1000 nm波段的反射率以结荚期为拐点先增大后减小, 最大反射率达到60%~70%左右; 通过对单作套作大豆冠层光谱一阶导数变换, 红边幅值呈现先增加后降低的趋势, 同时红边位置随叶片氮积累量的增加和减小出现“红移”与“蓝移”现象。经波段自由组合和回归分析表明, 以DSI (771、755)构建的线性( y = -1.249+3.209 x, R2= 0.847)和乘幂( y = -1.470 x1.676, R2= 0.872)模型能较精确地估测不同生育时期大豆冠层叶片氮素状况。
关键词:大豆; 氮素积累; 光谱反射率; 模型 Remote Detection of Canopy Leaf Nitrogen Status in Soybean by Hyperspectral Data under Monoculture and Intercropping Systems CHEN Jun-Xu, HUANG Shan, FAN Yuan-Fang, WANG Rui, LIU Qin-Lin, YANG Wen-Yu*, YANG Feng* Key Laboratory of Crop Eco-physiology and Farming System in Southwest, the Ministry of Agriculture / College of Agronomy, Sichuan Agricultural University / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, China Fund:The work was supported by the National Key Research and Development Program of China (2016YFD0300602) AbstractNon-destructive monitoring of soybean nitrogen status is important for precise N management in soybean production. In this study, the quantitative correlation between soybean leaf nitrogen status and canopy hyperspectral reflectance was investigated. Field experiments were conducted. With four nitrogen application rates for two years under monoculture and intercropping systems. The nitrogen accumulation of canopy leaves showed a single-peak changing trend in the process of soybean growth. The maximum value in monoculture and intercropping was 8.70 g m-2 and 8.38 g m-2, respectively, at pod stage under N3 treatment. The raw hyperspectral reflectance and the leaf nitrogen accumulation had the same changing trend at different growth stages with different planting patterns. The peak value of the raw hyperspectral reflectance in the 700-1000 nm occurred at pod stage. In the first-order derivative spectrum, the red edge amplitude values increased first and then decreased. The position of the red edge changed as “Red shift” and “Blue shift” with the increase or decrease of leaf nitrogen accumulation. The results of the correlation analysis showed that the linear model and the power model by using the Difference Spectral Index (DSI: 771, 755) based on the best spectral band combination (BSBC) had the greatest accuracy to estimate the leaf nitrogen status of soybean.
Keyword:Soybean; Nitrogen accumulation; Hyperspectral reflectance; Model Show Figures Show Figures
高光谱遥感自20世纪70年代以来, 就在农作物监测方面扮演着重要的角色。农业遥感主要以作物和土壤为对象, 利用地物的光谱特性来监测作物长势[1]、作物营养[2]及作物病虫害[3]等。氮素作为作物的重要营养元素, 不仅对作物正常的生长发育有着十分显著的影响, 也对作物品质起着十分重要的作用[4, 5, 6, 7]。胡珍珠等[8]研究表明, 在核桃的不同生育时期, 与叶片氮素含量相关的特征光谱各有不同。同时, Walburg等[9]研究也发现, 缺氮时玉米冠层叶片光谱的反射率在红光范围内增加, 但在近红外波段降低。岳延滨等[10]研究发现在760~1350 nm范围内, 用缺氮条件下冠层光谱反射率能够比较准确地估测辣椒的叶片全氮含量。田永超等[11]研究发现, 绿光560 nm和红光705 nm波段附近的反射率与近红外波段组合而成的光谱比值指数能够很好地监测水稻叶层全氮含量。Wei等[12]利用优化的指数构建的估测模型在估测冬小麦冠层叶片氮含量时能够部分消除品种差异、叶片水分含量、土壤性质及生育时期的影响且估测精度高。同时氮素的含量对大豆品质[13]、产量[14]都有明显的影响。但是影响大豆光谱特性的因素较多, 且不同氮素营养水平和种植模式下大豆光谱特性变化机理尚不完全明确, 还需要进一步深入研究。 大豆-玉米套作模式作为近年来大豆增产的重要措施之一, 较以往大豆的单作模式具有提高土地利用率、减少肥料浪费及比较效益高等特点[15]。但是由于高位作物玉米的荫蔽作用, 套作低位作物大豆的冠层光环境较单作明显不同, 对大豆产量的影响显著[16]。高志英等[17]研究表明, 光照环境和施氮水平之间的互作对玉米气孔特征的影响也是显著的。同时, 田间高光谱的测量由于受到高位作物玉米的荫蔽, 对套作模式下大豆冠层光谱产生影响[18]。近年来还未见对套作和不同施氮水平大豆氮素遥感监测研究的报道。 本研究利用单一波段、导数变换和两波段自由组合等方法筛选大豆叶片氮素敏感波段, 构建适合于单作套作大豆的氮素估测模型, 为不同种植模式下大豆氮素状况监测及氮肥精确管理提供理论支持。 1 材料与方法1.1 试验地点与材料2013年和2014年在仁寿县四川现代粮食生产示范基地进行试验。试验地土壤含有机质12.96 g kg-1、全氮1.10 g kg-1、全磷0.68 g kg-1、全钾14.66 g kg-1、碱解氮66.73 mg kg-1、速效磷3.26 mg kg-1、速效钾178.74 mg kg-1, pH 6.85。供试大豆品种为南豆12, 玉米品种登海605。 1.2 试验设计采用二因素裂区试验设计, 主因素为种植模式即套作和单作; 副因素为施纯氮水平, 设N0为0 kg hm-2, N1为60 kg hm-2, N2为120 kg hm-2, N3为180 kg hm-2, 重复3次。 为保证土壤肥力的一致性, 前茬作物种植小麦匀地。宽窄行种植玉米, 宽行160 cm, 窄行40 cm, 3月下旬育苗移栽, 7月下旬收获, 密度为6万株 hm-2, 每穴单株。玉米底肥为氮肥(纯N) 120 kg hm-2、磷肥(P2O5) 165 kg hm-2、钾肥(K2O) 95 kg hm-2。玉米大喇叭口期追施氮肥(纯氮) 120 kg hm-2。 大豆6月初播于玉米宽行内, 每幅种植2行, 穴距20 cm, 每穴2株, 行距40 cm。单作模式下, 大豆行距为50 cm, 穴距为40 cm, 每穴为2株。单作套作大豆密度一致, 均为10万株 hm-2。两种种植模式的小区面积均为6 m× 6 m。大豆底肥为大豆底肥为磷肥(P2O5) 80 kg hm-2、钾肥(K2O) 70 kg hm-2, 大豆氮肥(纯氮)按底肥: 始花期追肥=1: 1进行配施。除草、喷药等同大田操作。 1.3 测定项目与方法单作和套作种植模式下在大豆苗期、分枝期、始花期、盛花期、始荚期和鼓粒期同步测定大豆冠层光谱和氮素积累量。 1.3.1 光谱测定 使用荷兰AvaField-3型便携式高光谱地物波谱仪测量光谱, 光谱范围为350~1050 nm, 采样间隔为0.6 nm, 视场角为25° 。在6个生育期, 选择晴朗无云, 11:00— 14:00之间使用便携式观测架以距离大豆冠层1 m高度沿大豆条带测定光谱, 测定前后及时参考白板的校正。每小区取值均为3次测量平均值。 1.3.2 氮素测定 对应光谱测定位置(与光谱测定同步), 选取视场角范围内4株大豆叶片, 105℃杀青后在80℃烘干至恒重, 粉碎并过60目筛。用CE-440元素分析仪(美国加联仪器有限公司生产)测定叶片氮素。叶片氮素积累量(LNA)(g N m-2) = 干叶氮含量LNC (%) × 干叶干物重LDW (g m-2)。每小区取值均为3次测量平均值。 1.4 数据分析采用Microsoft Excel 2013整理数据, 使用Origin 9.0软件绘制; 利用DPS 7.05及Matlab程序对数据进行相关性分析, 模型构建(2013年n = 88)及验证(2014年n = 40)。在大豆氮素积累量及光谱反射率变化规律的基础上进行分析, 探究氮素积累量与光谱指数间的相关性。本文引用的光谱指数如表1所示。 表1 Table 1 表1(Table 1)
表1 本文引用的光谱指数 Table 1 Spectral index quoted in this paper
波长490-530 nm内(蓝边)一阶光谱的积分 The integral of first order spectra in the wavelengths of 490-530 nm
黄边面积 Yellow edge area, SDy
波长560-640 nm内(黄边)一阶光谱的积分 The integral of first order spectra in the wavelengths of 560-640 nm
红边面积 Red edge area, SDr
波长680-760 nm内(红边)一阶光谱的积分 The integral of first order spectra in the wavelengths of 680-760 nm
绿峰面积 Green peak area, SDg
波长510-560 nm间原始光谱曲线所包围的面积 The area of the original spectral curve enclosed in wavelengths of 510-560 nm
SDr/SDb
红边面积与蓝边面积的比 The ratio of red edge area and blue edge area
SDr/SDy
红边面积与黄边面积的比 The ratio of red edge area and yellow edge area
(SDr-SDb)/(SDr+SDb)
红边面积与蓝边面积的归一化值 The normalized value of red edge area and blue edge area
(SDr-SDy)/(SDr+SDy)
红边面积与黄边面积的归一化值 The normalized value of red edge area and yellow edge area
R is the spectral reflectance rate at the corresponding wavelength. R是相应波长的光谱反射率。
表1 本文引用的光谱指数 Table 1 Spectral index quoted in this paper
2 结果与分析2.1 不同种植模式和氮肥水平下大豆叶片氮素积累量变化规律由表2可知, 对于同一施氮水平, 随着生育时期的推进, 单作套作种植模式下的大豆叶片氮素积累量均呈现先增加后减少的趋势, 在结荚期达到最大, 且两年表现出相同规律。而在不同的施肥水平和同一生育时期下, 随着施氮量的增加, 叶片氮素积累量总体上均呈现增加的趋势; N3处理叶片氮素积累量最大, 2013年和2014年套作大豆冠层叶片氮素积累量最大值分别为9.36 g m-2和7.40 g m-2; 而单作大豆分别为8.79 g m-2和8.61 g m-2。通过对不同生育时期单作套作模式下大豆叶片氮素积累量的比较, 表明单作下氮素积累量的最快增长时期为始花期到盛花期, 而套作条件下为盛花期到结荚期, 这可能归因于本试验的套作模式下玉米收获时大豆处于始花期, 始花期之前玉米对大豆的荫蔽使得大豆生长受到一定程度抑制, 导致叶片氮素积累量相对单作偏低, 而玉米收获后荫蔽解除, 受光影响的生理活动随冠层光环境的恢复在一定程度上逐步得到补偿, 大豆在始花期到盛花期开始弥补前期荫蔽所带来的影响, 进而可能使得根系对氮素的吸收增加, 但这个恢复过程是相对缓慢的, 因此造成单作套作下氮素最快增长时期的差异。 表2 Table 2 表2(Table 2)
表2 不同施氮水平下单作和套作大豆叶片氮素积累量变化 Table 2 Changes of soybean leaf nitrogen accumulation at different growth stages in monoculture and intercropping under different nitrogen levels
生育期 Growth stage
种植方式 Pattern
2013
2014
N0
N1
N2
N3
N0
N1
N2
N3
苗期 Seeding stage
套作 Intercropping
0.18
0.25
0.27
0.22
0.06
0.07
0.08
0.09
单作 Monoculture
0.39
0.48
0.39
0.55
0.08
0.09
0.18
0.20
分枝期 Branching stage
套作 Intercropping
0.31
0.35
0.36
0.34
0.26
0.32
0.34
0.37
单作 Monoculture
0.43
0.62
0.86
0.71
0.32
0.40
0.46
0.49
始花期 Beginning stage
套作 Intercropping
0.87
0.84
1.16
1.12
0.78
1.09
1.29
1.41
单作 Monoculture
1.86
1.57
2.65
2.94
1.79
2.18
2.53
2.82
盛花期 Full bloom
套作 Intercropping
2.33
2.38
3.57
3.25
1.94
2.27
2.73
3.16
单作 Monoculture
5.27
5.56
6.46
6.57
5.34
5.81
6.51
6.73
结荚期 Full pod
套作 Intercropping
7.18
7.14
7.85
9.36
5.65
6.03
6.54
7.40
单作 Monoculture
5.85
8.40
7.31
8.79
6.15
7.16
7.85
8.61
鼓粒期 Full seed
套作 Intercropping
4.52
5.49
7.09
6.74
0.60
0.62
0.97
0.90
单作 Monoculture
3.59
4.71
5.16
5.93
0.71
1.12
0.98
1.07
表2 不同施氮水平下单作和套作大豆叶片氮素积累量变化 Table 2 Changes of soybean leaf nitrogen accumulation at different growth stages in monoculture and intercropping under different nitrogen levels
图2 单作和套作大豆叶片一阶导数光谱变化Fig. 2 Change patterns of soybean leaf first derivative spectra at different growth stages in monoculture and intercropping condition
李卫国, 李秉柏, 王志明, 张娅香, 黄晓军. 作物长势遥感监测应用研究现状和展望. , 2006, (3): 12-15Li WG, Li BB, Wang ZM, Zhang YC, Huang XJ. Status and prospect on research and application of crop condition monitoring using remote sensing. , 2006, (3): 12-15 (in Chinese with English abstract)[本文引用:1]
[2]
吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星. 棉花冠层高光谱指数与叶片氮积累量的定量关系. , 2007, 33: 518-522Wu HB, ZhuY, Tian YC, YaoX, Liu XJ, Zhou ZG, Cao WX. Relationship between canopy hyperspectral index and leaf nitrogen accumulation in cotton. , 2007, 33: 518-522 (in Chinese with English abstract)[本文引用:1]
[3]
冯伟, 王晓宇, 宋晓, 贺利, 王永华, 郭天财. 基于冠层反射光谱的小麦白粉病严重度估测. , 2013, 39: 1469-1477FengW, Wang XY, SongX, HeL, Wang YH, Guo TC. Estimation of severity level of wheat powdery mildew based on canopy spectral reflectance. , 2013, 39: 1469-1477 (in Chinese with English abstract)[本文引用:1]
[4]
胡军林. 主要农作物缺氮症状及防治措施. , 2008, 25(1): 54, 108Hu J L. Causes of nitrogen deficiency in main crops and preventive measures. , 2008, 25(1): 54, 108 (in Chinese with English abstract)[本文引用:1]
[5]
郝小雨, 周宝库, 马星竹, 高中超. 长期不同施肥措施下黑土作物产量与养分平衡特征. , 2015, 31(16): 178-185Hao XY, Zhou BK, Ma XZ, Gao ZC. Characteristics of crop yield and nutrient balance under different long-term fertilization practices in black soil. , 2015, 31(16): 178-185 (in Chinese with English abstract)[本文引用:1]
[6]
BekeleW. Effect of soybean varieties and nitrogen fertilizer rates on yield, yield components and productivity of associated crops under maize/soybean intercropping at Mechara, Eastern Ethiopia. , 2016, 5(1): 1[本文引用:1]
[7]
王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. , 2015, 41: 1269-1278Wang JS, Jiao XY, Ding YC, Dong EW, Bai WB, Wang LG, Wu AL. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium. , 2015, 41: 1269-1278 (in Chinese with English abstract)[本文引用:1]
[8]
胡珍珠, 潘存德, 肖冰, 潘鑫. 基于光谱特征参量的核桃叶片氮素含量估测模型. , 2015, 31(9): 180-186Hu ZZ, Pan CD, XiaoB, PanX. Spectral characteristic parameter-based models for foliar nitrogen concentration estimation of Juglans regia. , 2015, 31(9): 180-186 (in Chinese with English abstract)[本文引用:2]
[9]
WalburgG, Bauer ME, Daughtry C S T. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies. , 1982, DOI: DOI:10.2134/agronj1982.00021962007400040020x[本文引用:1]
[10]
岳延滨, 聂克艳, 黎瑞君, 李莉婕, 孙长青, 彭志良, 赵泽英. 不同施氮水平辣椒地上部全氮含量与冠层光谱反射率的相关性. , 2014, (11): 244-247Yue YB, Nie KY, Li YJ, Li LJ, Sun CQ, Peng ZL, Zhao ZY. Correlation of total nitrogen content in overground part of pepper at different nitrogen application level with canopy spectral reflectance. , 2014, (11): 244-247 (in Chinese with English abstract)[本文引用:1]
[11]
田永超, 杨杰, 姚霞, 曹卫星, 朱艳. 利用叶片高光谱指数预测水稻群体叶层全氮含量. , 2010, 36: 1529-1537Tian YC, YangJie, YaoX, Cao WX, ZhuY. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice. , 2010, 36: 1529-1537 (in Chinese with English abstract)[本文引用:1]
[12]
WeiF, Zhang HY, Zhang YS, Qi SL, Heng YR, Guo BB, Ma DY, Guo TC. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. , 2016, 198: 238-246[本文引用:1]
[13]
宋英博. 不同施氮量对大豆蛋白质和脂肪含量的影响. , 2010, (7): 52-53Song YB. Effect of different nitrogen application on protein and fat content in soybean. , 2010, (7): 52-53 (in Chinese with English abstract)[本文引用:1]
[14]
董守坤, 龚振平, 祖伟. 氮素营养水平对大豆氮素积累及产量的影响. , 2010, 16: 65-70Dong SK, Gong ZP, ZuW. Effects of nitrogen nutrition levels on N-accumulation and yields of soybean. , 2010, 16: 65-70 (in Chinese with English abstract)[本文引用:1]
[15]
杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. , 2008, 27: 1-7Yang WY, Yong TW, Ren WJ, Fan GQ, Mu JY, Lu XL. Development of soybeans, the revitalization of soybean industry. , 2008, 27: 1-7 (in Chinese with English abstract)[本文引用:1]
[16]
崔亮, 苏本营, 杨峰, 杨文钰. 带状套作大豆群体冠层光能截获与利用特征. , 2015, 48: 43-54CuiL, Su BY, YangF, Yang WY. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system. , 2015, 48: 43-54 (in Chinese with English abstract)[本文引用:2]
[17]
高志英, 丁圣彦, 谷艳芳, 邢倩. 不同光环境与氮肥互作对玉米气孔特征的影响. , 2008, 37(9): 15-19Gao ZY, Ding SY, Gu YF, XingQ. The interactive effects of light condition and nitrogen supply on stomatal characteristics of maize. , 2008, 37(9): 15-19 (in Chinese with English abstract)[本文引用:1]
[18]
何挺, 刘荣, 王静. 野外波谱测量的影响因素研究. , 2003, 19(5): 6-10HeT, LiuR, WangJ. The influences factors on field spectrometry. , 2003, 19(5): 6-10 (in Chinese with English abstract)[本文引用:1]
[19]
杨德金, 彭守华. 秦优12不同播期、密度和施氮水平对产量的影响. , 2010, 16(13): 100-102Yang DJ, Peng SH. Effects of different sowing date, density and nitrogen application on yield. , 2010, 16(13): 100-102 (in Chinese)[本文引用:1]
[20]
郭天财, 宋晓, 马冬云, 冯伟, 王永华. 施氮水平对2种穗型冬小麦品种产量及氮素吸收利用的影响. , 2008, 28: 554-558Guo TC, SongX, Ma DY, FengW, Wang YH. Effects of nitrogen application on grain yield, n absorption and utilization rate in winter wheat with two spike-types. , 2008, 28: 554-558 (in Chinese with English abstract)[本文引用:1]
[21]
宁堂原, 焦念元, 李增嘉, 张民, 赵春, 韩宾, 邵国庆. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. , 2006, 17: 2332-2336Ning TY, Jiao NY, Li ZJ, ZhangM, ZhaoC, HanB, Shao GQ. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. , 2006, 17: 2332-2336 (in Chinese with English abstract)[本文引用:1]
[22]
闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. , 2011, 20: 233-238Yan YH, Yang WY, Zhang XQ, Chen XL, Chen ZQ. Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. , 2011, 20: 233-238 (in Chinese with English abstract)[本文引用:1]
[23]
刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响. , 2014, 40: 1629-1638Liu XM, Yong TW, Su BY, Liu WY, ZhouL, SongC, YangF, Wang XC, Yang WY. Effect of reduced N application on crop yield in maize-soybean intercropping system. , 2014, 40: 1629-1638 (in Chinese with English abstract)[本文引用:1]
[24]
田艳洪, 刘元英, 张文钊, 罗盛国. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响. , 2008, 39(5): 15-19Tian YH, Liu YY, Zhang WZ, Luo SG. Effect of N fertilization at different stage on nitrogenase activity and yield of soybean. , 2008, 39(5): 15-19 (in Chinese with English abstract)[本文引用:1]
[25]
周丽丽, 冯汉宇, 阎忠敏, 刘克, 周顺利. 玉米叶片氮含量的高光谱估算及其品种差异. , 2010, 26(8): 195-199Zhou LL, Feng HY, Yan ZM, LiuK, Zhou SL. Hyperspectral diagnosis of leaf N concentration of maize and variety difference. , 2010, 26(8): 195-199 (in Chinese with English abstract)[本文引用:1]
[26]
冯伟, 朱艳, 姚霞, 田永超, 郭天财, 曹卫星. 利用红边特征参数监测小麦叶片氮素积累状况. , 2009, 25(11): 194-201FengW, ZhuY, YaoX, Tian YC, Guo TC, Cao WX. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters. , 2009, 25(11): 194-201 (in Chinese with English abstract)[本文引用:1]
[27]
梁留锁, 马旭, 乔欣. 大豆叶片氮素含量检测技术的试验研究. , 2010, 32(11): 121-124Liang LS, MaX, QiaoX. The total leaf nitrogen determination of the soybean’s canopy based on spectral reflection. , 2010, 32(11): 121-124 (in Chinese with English abstract)[本文引用:1]
[28]
何挺, 程烨, 王静. 野外地物光谱测量技术及方法. , 2002, 16(5): 30-36HeT, ChengY, WangJ. The technology and method of field spectrometry. , 2002, 16(5): 30-36 (in Chinese with English abstract)[本文引用:1]
[29]
崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. , 2014, 47: 1489-1501CuiL, Su BY, YangF, Yang WY. Effects of photosynthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. , 2014, 47: 1489-1501 (in Chinese with English abstract)[本文引用:1]