摘要以4个抗豆象绿豆品系B18、B20、B24和A22为试材, 以感虫绿豆品种晋绿1号为对照, 研究了不同绿豆中胰蛋白酶抑制剂活性及其在高温、酸碱及超声波下绿豆的胰蛋白酶抑制剂稳定性。结果表明, 4个抗豆象绿豆品种胰蛋白酶抑制剂活性均显著高于对照感虫品种, 且均与对照在0.01水平差异极显著, 其中B18活性最高, 高达70.2 TI U g-1, B20和A22活性次之, B24活性最差, 但仍高达55.2 TI U g-1。4个抗豆象绿豆品种在不同温度、不同pH和不同振幅超声波下, 残余活性均比对照高, 且残余活性均随温度升高、温浴时间延长而降低, pH在2~12之间, 随pH值的升高, 残余活性均呈现先升高后降低的趋势, 且pH值为6~8之间残余活性最高, 残余活性也随超声波辐射强度升高、时间延长而降低, 且4个抗虫品种中B18的耐高温性、耐酸碱性和耐辐射性最强, B20次之, B24的耐高温性、耐酸碱性最差, A22耐辐射性最差, 说明在不同温度、pH和超声波处理后, B18、B20是抗豆象绿豆胰蛋白酶抑制剂残余活性保存最高的2个品种, 应用价值较大。
关键词:抗豆象绿豆; 胰蛋白酶抑制剂; 活性; 温度; pH; 超声波 Activity and Physico Chemical Properties of Trypsin Inhibitor in Bruchid- Resistant Mung Bean FAN Yan-Ping1, ZHANG Yao-Wen2, ZHAO Xue-Ying2, ZHANG Xian-Hong1,* 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
2Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China
Fund:The study was supported by the China Agriculture Research System (GARS-08-G11) AbstractTaking bruchid-resistant mung bean lines including B18, B20, B24, and A22 as experimental materials, a susceptible variety mung bean Jinlyu 1 as control, the activity of trypsin inhibitor and the stability of mung bean trypsin inhibitor under high temperature, pH and ultrasonic were measured. The trypsin inhibitor activities of four bruchid-resistant mung bean lines were significantly higher than those of control (Jinlyu 1). There were significant differences of trypsin inhibitor activity between four bruchid-resistant mung bean lines and the control at the 1% probability level. Among them, B18 had the highest activity (70.2 TI U g-1), following by B20 and A22, and B24 had the lowest one (55.2 TI U g-1). When treated with temperature, pH and amplitude of ultrasonic, the residual activities of trypsin inhibitor from the four bruchid-resistant mung bean lines were higher than those of control. The residual activities decreased with the increase of temperature and time of warm bath, which enhanced initially and then weakened when pH value was elevating between 2-12, with the highest when pH ranged from six to eight. The residual activities also reduced with the increasing ultrasonic intensity and treatment time. Among the four tested lines, B18 had the highest tolerance to high temperature, high acid and alkali stress, and ultrasonic intensity; B20 had the moderate tolerance, B24 had the lowest tolerance to high temperature, acid and alkali stress, while A22 had the lowest tolerance to ultrasonic treatment. We concluded that among four lines, B18 and B20 have the highest residual activity of bruchid-resistant mung bean trypsin inhibitor under temperature, pH and ultrasonic treatments, being of higher value of its application.
Keyword:Bruchid-resistant mung bean; Trypsin inhibitor; Activity; Temperature; pH; Ultrasonic Show Figures Show Figures
2 结果与分析2.1 不同抗豆象绿豆品种胰蛋白酶抑制剂活性比较由表1可知, 4个抗豆象绿豆品种胰蛋白酶抑制剂活性均显著高于对照, 且与对照在0.01水平差异极显著, 4个抗虫品种间B18分别与A22、B20和B24在0.01水平差异极显著, B20和B24在0.01水平差异极显著, 其中B18活性最高, 达70.2 TI U g-1, 为对照的1.65倍, B20和A22次之, 分别达62.5 TI U g-1和60.1 TI U g-1, 分别是对照的1.47倍和1.41倍, B24活性最低, 为55.2 TI U g-1, 仍为对照的1.30倍, 4个抗虫品种间胰蛋白酶抑制剂活性差异较大, 高低相差1.27倍。 表1 Table 1 表1(Table 1)
表1 不同抗豆象绿豆品种胰蛋白酶抑制剂活性比较 Table 1 TI activity of different bruchid-resistant mung bean varieties
绿豆品种 Mung bean variety
TI活性 TI activity (TI U g-1)
与对照比值 Ratio to CK
对照 Control
42.6± 0.964 De
1.00
A22
60.1± 1.997 Bc
1.41
B18
70.2± 1.374 Aa
1.65
B20
62.5± 0.656 Bb
1.47
B24
55.2± 0.721 Cd
1.30
均值 Mean
58.12
变幅 Range
41.5-71.4
变异系数 CV
0.164
Values followed by different letters are significantly different at the 0.01 (capital letter) or 0.05 (small letter) probability levels. CV:coefficient of variation. 同一列数据后不同大小写字母分别表示在0.01或0.05水平上差异显著。
表1 不同抗豆象绿豆品种胰蛋白酶抑制剂活性比较 Table 1 TI activity of different bruchid-resistant mung bean varieties
表2 温度对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 2 Effect of temperature on TI activity in bruchid-resistant mung bean
温浴时间 Warm bath time
绿豆品种 Mung bean variety
残余活性 Residual activity (%)
40° C
60° C
80° C
100° C
30 min
对照 Control
90.3± 0.721 d
85.5± 0.854 d
78.7± 0.656 c
70.5± 0.819 e
A22
91.8± 0.721 c
87.5± 0.721 c
83.6± 0.625 b
80.5± 0.854 c
B18
98.7± 0.819 a
95.8± 0.721 a
90.6± 0.854 a
88.5± 0.625 a
B20
95.5± 0.819 b
92.7± 0.755 b
89.5± 1.054 a
85.2± 0.964 b
B24
90.6± 0.819 cd
86.7± 0.985 cd
79.5± 1.000 c
76.5± 0.954 d
均值 Mean
93.38
89.64
84.38
80.24
变幅 Range
89.5-99.6
84.6-96.6
78.0-91.5
69.8-89.2
变异系数CV
0.037
0.046
0.061
0.082
60 min
对照 Control
90.0± 1.389 c
81.4± 0.656 c
72.4± 0.800 e
65.2± 0.721 d
A22
90.5± 0.819 c
82.6± 0.721 c
80.8± 0.656 c
73.5± 0.721 b
B18
97.5± 0.721 a
92.3± 0.721 a
88.6± 0.819 a
78.9± 0.794 a
B20
94.3± 0.794 b
90.5± 0.854 b
85.7± 0.854 b
74.8± 0.954 b
B24
90.0± 0.900 c
82.3± 1.345 c
75.8± 1.100 d
70.1± 1.513 c
均值 Mean
92.46
85.82
80.66
72.5
变幅 Range
89.1-98.1
80.8-92.9
71.6-89.3
64.6-79.5
变异系数 CV
0.035
0.056
0.078
0.067
Values followed by different letters are significantly different at the 0.05 probability level. CV:coefficient of variation. 同一列数据后不同字母表示在0.05水平上差异显著。
表2 温度对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 2 Effect of temperature on TI activity in bruchid-resistant mung bean
表3 Table 3 表3(Table 3)
表3 对不同绿豆品种和不同温度处理下TI活性作均数间的多重比较 Table 3 Multiple comparisons of TI activity in different mung bean varieties and different temperatures
品种 Variety
TI活性均值 TI activity mean value
时间 Time (min)
TI活性均值 TI activity mean value
温度 Temperature (° C)
TI活性均值 TI activity mean value
对照 Control
79.2500 Ee
30
86.9100 Aa
40
92.9200 Aa
A22
83.8500 Cc
60
82.8450 Bb
60
87.7300 Bb
B18
91.3625 Aa
80
82.5200 Cc
B20
88.4875 Bb
100
76.3400 Dd
B24
81.4375 Dd
Values followed by different letters are significantly different at the 0.01 (capital letter) or 0.05 (small letter) probability levels. 同一列数据后不同大小写字母分别表示在0.01或0.05水平上差异显著。
表3 对不同绿豆品种和不同温度处理下TI活性作均数间的多重比较 Table 3 Multiple comparisons of TI activity in different mung bean varieties and different temperatures
表4 pH对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 4 Effect of pH on TI activity in bruchid-resistant mung bean
绿豆品种 Mung bean variety
残余活性 Residual activity (%)
pH 2
pH 4
pH 6
pH 8
pH 10
pH 12
对照 Control
70.5± 0.954 d
75.8± 0.872 d
88.2± 0.781 e
86.5± 0.819 c
70.7± 0.964 d
25.1± 0.819 e
A22
77.5± 0.819 c
85.5± 0.656 b
92.6± 0.917 c
93.1± 0.700 b
75.0± 1.082 c
62.4± 0.872 c
B18
89.5± 0.819 a
92.2± 0.985 a
97.5± 0.985 a
95.8± 0.781 a
80.4± 0.900 a
70.6± 0.800 a
B20
82.8± 0.854 b
91.5± 1.572 a
94.8± 0.854 b
92.2± 1.100 b
78.2± 0.819 b
68.5± 0.794 b
B24
70.9± 1.308 d
80.5± 1.153 c
90.2± 1.249 d
86.5± 0.755 c
68.2± 0.700 e
60.0± 1.044 d
均值 Mean
78.24
85.10
92.66
90.82
74.50
57.32
变幅 Range
69.9-90.4
74.8-93.3
87.7-98.3
85.8-96.3
69.6-81.3
24.4-71.4
变异系数 CV
0.096
0.078
0.038
0.043
0.064
0.299
Values followed by different letters are significantly different at the 0.05 probability level. CV:coefficient of variation. 同一列数据后不同字母表示在0.05水平上差异显著。
表4 pH对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 4 Effect of pH on TI activity in bruchid-resistant mung bean
表5 Tab 5 表5(Tab 5)
表5 对不同绿豆品种和不同pH处理下TI活性作均数间的多重比较 Tab 5 Multiple comparisons of TI activity in different mung bean varieties and different pH values
品种 Variety
TI活性均值 TI activity mean value
pH
TI活性均值 TI activity mean value
对照 Control
69.4667 Ee
2
78.2400 Dd
A22
81.0167 Cc
4
85.1000 Cc
B18
87.6667 Aa
6
92.6600 Aa
B20
84.6667 Bb
8
90.8200 Bb
B24
76.0500 Dd
10
74.5000 Ee
12
57.3200 Ff
Values followed by different letters are significantly different at the 0.01 (capital letter) or 0.05 (small letter) probability levels. 同一列数据后不同大小写字母分别表示在0.01或0.05水平上差异显著。
表5 对不同绿豆品种和不同pH处理下TI活性作均数间的多重比较 Tab 5 Multiple comparisons of TI activity in different mung bean varieties and different pH values
表6 超声波钝化对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 6 Effect of ultrasonic inactivation on TI activity in bruchid-resistant mung bean
处理时间 Treatment time
绿豆品种 Mung bean variety
残余活性 Residual activity (%)
25%振幅 25% amplitude
35%振幅 35% amplitude
45%振幅 45% amplitude
55%振幅 55% amplitude
65%振幅 65% amplitude
5 min
对照 Control
90.0± 1.082 d
84.4± 0.700 e
80.5± 0.985 d
78.7± 0.755 e
70.9± 1.473 d
A22
91.0± 1.453 cd
86.5± 0.656 d
83.5± 0.954 c
81.4± 0.964 d
78.9± 0.794 c
B18
98.2± 1.136 a
95.6± 0.985 a
92.4± 0.954 a
90.3± 0.917 a
87.4± 1.308 a
B20
95.0± 1.345 b
92.8± 0.964 b
90.4± 0.985 b
88.2± 1.044 b
80.0± 1.300 c
B24
92.3± 0.900 c
90.5± 0.819 c
88.8± 0.819 b
85.9± 1.136 c
83.5± 1.039 b
均值 Mean
93.30
89.96
87.12
84.90
80.14
变幅 Range
89.1-99.5
83.9-96.7
79.4-93.5
77.9-91.1
69.2-86.5
变异系数 CV
0.035
0.048
0.053
0.053
0.072
10 min
对照 Control
85.2± 0.917 e
80.2± 0.985 d
76.5± 0.819 d
66.8± 0.819 d
60.2± 0.854 e
A22
87.6± 0.985 d
84.3± 0.781 c
80.4± 0.900 c
70.5± 0.964 c
65.4± 1.136 d
B18
95.4± 1.212 a
91.0± 0.781 a
89.5± 1.136 a
82.6± 0.900 a
78.9± 0.954 a
B20
93.4± 0.900 b
87.4± 0.954 b
80.6± 1.082 c
76.5± 0.900 b
72.4± 0.954 b
B24
91.5± 1.127 c
85.4± 1.127 c
86.6± 0.700 b
75.2± 1.386 b
69.9± 0.872 c
均值 Mean
90.62
85.66
82.72
74.32
69.36
变幅 Range
84.4-96.8
79.1-91.5
75.8-90.3
65.9-83.5
59.4-79.5
变异系数 CV
0.044
0.044
0.059
0.076
0.095
15 min
对照 Control
80.5± 0.900 d
78.7± 0.854 c
72.4± 0.721 d
62.5± 0.819 d
50.6± 0.656 e
A22
83.8± 0.889 c
80.7± 0.985 b
73.8± 1.127 cd
65.5± 1.127 c
58.2± 0.917 d
B18
92.3± 1.082 a
86.8± 1.054 a
81.4± 1.039 a
75.5± 0.954 a
68.8± 0.872 a
B20
91.5± 0.819 ab
82.5± 0.985 b
75.4± 0.721 bc
68.2± 0.819 b
62.5± 0.900 b
B24
89.9± 0.954 b
81.0± 1.345 b
75.9± 1.539 b
66.8± 0.819 bc
60.5± 0.819 c
均值 Mean
87.60
81.94
75.78
67.70
60.12
变幅 Range
79.6-93.5
77.8-87.8
71.6-82.6
61.8-76.6
49.9-69.4
变异系数 CV
0.056
0.036
0.044
0.067
0.103
20 min
对照 Control
78.4± 0.985 d
74.7± 0.854 c
60.8± 1.808 d
58.5± 0.625 b
40.3± 0.854 e
A22
81.0± 0.781 c
75.5± 1.212 c
63.8± 0.800 c
55.2± 1.136 c
47.5± 1.039 d
B18
90.0± 1.300 a
82.7± 1.212 a
75.5± 0.656 a
62.9± 1.229 a
59.8± 0.819 a
B20
88.2± 0.964 ab
78.0± 1.375 b
71.5± 0.819 b
58.5± 0.755 b
52.5± 0.900 b
B24
87.4± 0.954 b
75.8± 0.800 c
65.2± 0.854 c
61.5± 1.127 a
50.2± 1.100 c
均值 Mean
85.00
77.34
67.36
59.32
50.06
变幅 Range
77.6-91.5
73.9-83.8
58.9-76.2
57.8-63.8
39.5-60.5
变异系数 CV
0.056
0.041
0.083
0.049
0.133
Values followed by different letters are significantly different at the 0.05 probability level. CV:coefficient of variation. 同一列数据后不同字母表示在0.05水平上差异显著。
表6 超声波钝化对抗豆象绿豆胰蛋白酶抑制剂活性的影响 Table 6 Effect of ultrasonic inactivation on TI activity in bruchid-resistant mung bean
表7 Table 7 表7(Table 7)
表7 对不同绿豆品种和不同振幅处理下TI活性作均数间的多重比较 Table 7 Multiple comparisons of TI activity in different mung bean varieties and different amplitudes
品种 Variety
TI活性均值 TI activity mean value
时间 Time (min)
TI活性均值 TI activity mean value
振幅 Amplitude (%)
TI活性均值 TI activity mean value
对照 Control
72.5800 Ee
5
87.0840 Aa
25
89.1300 Aa
A22
74.6850 Dd
10
80.5360 Bb
35
83.7250 Bb
B18
83.8500 Aa
15
74.6280 Cc
45
78.2450 Cc
B20
79.2750 Bb
20
67.8160 Dd
55
71.5600 Dd
B24
78.1900 Cc
65
64.9200 Ee
Values followed by different letters are significantly different at the 0.01 (capital letter) or 0.05 (small letter) probability level. 同一列数据后不同大小写字母分别表示在0.01或0.05水平上差异显著。
表7 对不同绿豆品种和不同振幅处理下TI活性作均数间的多重比较 Table 7 Multiple comparisons of TI activity in different mung bean varieties and different amplitudes
廖海, 杜林方, 周嘉裕. 植物中蛋白类蛋白酶抑制剂的研究进展. 天然产物研究与开发, 2002, 14(1):80-84LiaoH, Du LF, Zhou JY. Research progress of protein protease inhibitors in plants. Nat Prod Res Dev, 2002, 14(1):80-84 (in Chinese)[本文引用:1]
[2]
万善霞, 王婉婉, 滑静, 张淑平. 胰蛋白酶抑制剂在不同领域的研究概况. 北京农学院学报, 2003, 18:152-155Wan SX, Wang WW, HuaJ, Zhang S P. Research status of trypsin inhibitor in different fields. J Beijing Agric Coll, 2003, 18:152-155(in Chinese with English abstract)[本文引用:1]
[3]
罗玉娇, 李滨, 舒衡平, 蒋立平. Kunitz型胰蛋白酶抑制剂的研究进展. 中国生化药物杂志, 2012, 33:316-319Luo YJ, LiB, Shu HP, Jiang L P. Research advances in Kunitz trypsin inhibitor. Chin J Biochem Pharm, 2012, 33:316-319(in Chinese)[本文引用:1]
[4]
吴国昭, 朱克岩, 曾任森. 大豆胰蛋白酶抑制剂对斜纹夜蛾生长发育的影响. 生态环境学报, 2013, 22:1335-1340Wu GZ, Zhu KY, Zeng RS. Effect of soybean trypsin inhibitor on the growth and development of Spodoptera litura. Ecol Environl Sci, 2013, 22:1335-1340 (in Chinese)[本文引用:2]
[5]
王荣春, 孙建华, 何述栋, 马莺. 胰蛋白酶抑制剂的结构与功能研究进展. 食品科学, 2013, 34(9):364-368Wang RC, Sun JH, He SD, MaY. Recent advance in research on the structure and function of trypsin inhibitor. Food Sci, 2013, 34(9):364-368 (in Chinese with English abstract)[本文引用:2]
[6]
Oliveira AS, MiglioloL, Aquino RO, Ribeiro J K C, Macedo L L P, Andrade L B, Bemquerer M P, Santos E A, Kiyota S, Sales M P. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its vitro effects towards digestive enzymes from insect pest. Plant Physiol Biochem, 2007, 45:858-865[本文引用:2]
[7]
刘大伟, 陈立杰, 段玉玺. 灰皮支黑豆胰蛋白酶抑制剂基因的克隆及其在胞囊线虫胁迫下的表达分析. 河南农业科学, 2016, 39(4):94-97Liu DW, Chen LJ, Duan YX. Cloning of soybean Kunitz trypsin inhibitor gene from huipizhiheidou and expression analysis in soybean infected by Heterodera glycines. J Henan Agric Sci, 2016, 39(4):94-97 (in Chinese with English abstract)[本文引用:2]
[8]
Ye XY, Ng TB, Rao PF. A Bowman-Birk-type trypsin-chymotrypsin inhibitor from broad beans. Bichem Biophys Res Commun, 2001, 289:91-96[本文引用:1]
[9]
Evand ro FF, Wong JH, Ng TB. Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng, 2010, 109:211-217[本文引用:1]
[10]
王长良, 张永忠, 孙志刚. Bowman-Birk型大豆胰蛋白酶抑制剂研究进展. 大豆科学, 2007, 26:757-761Wang CL, Zhang YZ, Sun ZG. Progress on the research of Bowman-Birk soybean trypsin inhibitor. Soybean Sci, 2007, 26:757-761 (in Chinese with English abstract)[本文引用:1]
[11]
KobayashiH, SuzukiM, KanayamaN, TeraoT. A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastas, 2004, 21:159-166[本文引用:1]
[12]
张少娟, 薛晓鸥, 刘同祥, 艾浩, 牛建昭. 大豆胰蛋白酶抑制剂对人宫颈癌Hela细胞增殖的影响. 辽宁医学院学报, 2008, 29:106-109Zhang SJ, Xue XO, Liu TX, AiH, Niu JZ. The effect of soybean typsin inhibitor on proliferation of human Hela cells. J Liaoning Med Univ, 2008, 29:106-109 (in Chinese with English abstract)[本文引用:1]
[13]
Ho V SM, Ng TB. A Bowman-Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. J Pept Sci, 2008, 14:278-282[本文引用:1]
白崇智, 李玉英, 李芳, 张政, 王转花. 重组荞麦胰蛋白酶抑制剂诱导肝癌细胞H22凋亡的作用及其机制. 细胞生物学杂志, 2009, 31:79-83Bai CZ, Li YY, LiF, ZhangZ, Wang ZH. Effect of recombinant buckwheat trypsin inhibitor on apoptosis of hepatocellular carcinoma cell line H22 and its mechanism. Chin J Cell Biol, 2009, 31:79-83 (in Chinese)[本文引用:1]
[16]
李娇, 崔晓东, 马晓丽, 王转花. 重组荞麦胰蛋白酶抑制剂延长C. elegans寿命的作用机制. 中国生物化学与分子生物学报, 2016, 32:1112-1120LiJ, Cui XD, Ma XL, Wang ZH. Mechanism underlying prolongevity induced by rBTI in Caenorhabditis elegans. Chin J Biochem Mol Biol, 2016, 32:1112-1120 (in Chinese with English abstract)[本文引用:1]
[17]
Sagili RR, PankiwT, Zhu-SalzmanK. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L. ). J Insect Physiol, 2005, 51:953-957[本文引用:1]
[18]
Zeng RS, Su YJ, YeM, Xie LJ, ChenM, Song YY. Plant induced defense and biochemical mechanisms. J South China Agric Univ, 2008, 29:1-6[本文引用:1]
[19]
Zeng RS, NiuG, WenZ, Schuler MA, Berenbaum MR. Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol, 2007, 33:449-461[本文引用:1]
[20]
戚正武, 任梅轩, 屈贤铭, 罗珊珊, 周元聪, 王克夷, 曹天钦. 绿豆胰蛋白酶抑制剂化学与物化特征及其与活力的关系. 中国生理科学会学术会议论文集, 北京, 1964. pp 43-44Qi ZW, Ren MX, Qu XM, Luo SS, Zhou YC, Wang KY, Cao TQ. Characterization of chemical and physicochemical properties of mung bean trypsin inhibitor and its relationship with viability. In:Proceedings of the Chinese Society of Physiological Sciences, Beijing, China, 1964. pp 43-44(in Chinese)[本文引用:1]
[21]
屈贤铭, 罗珊珊, 任梅轩, 戚正武, 曹天钦. 绿豆胰蛋白酶抑制剂的研究:II. 抑制剂A、B组份的关系及其化学结构的特征. 生物化学与生物物理学报, 1964, 4:588-597Qu XM, Luo SS, Ren MX, Qi ZW, Cao TQ. Studies on inhibitors of mung bean trypsin:II. The relationship between inhibitors, A, B components and their chemical structure characteristics. Acta Biochim Biophy Sin, 1964, 4:588-597 (in Chinese)[本文引用:1]
[22]
谭复隆, 戚正武. 绿豆胰蛋白酶抑制剂两活性区域的拆分. 生理科学, 1982, 2(5):13Tan FL, Qi ZW. Resolution of two active region of mung bean trypsin inhibitor. Physiol Sci, 1982, 2(5):13 (in Chinese)[本文引用:1]
[23]
曲梅, 韩锦铂, 孟延发. 绿豆胰蛋白酶抑制剂对蛋白质前体加工酶的抑制活性. 第二军医大学学报, 2006, 27:258-262QuM, Han JB, Meng YF. Inhibitory activity of mung bean trypsin inhibitor on protein precursor processing enzymes. Acad J Second Mil Med Univ, 2006, 27:258-262 (in Chinese with English abstract)[本文引用:2]
邵彪, 汪少芸, 饶平凡. 黑豆胰蛋白酶抑制剂的纯化及性质研究. 中国食品学报, 2010, 10(6):47-53ShaoB, Wang SY, Rao PF. Studies on Purification and characterization of trypsin inhibitor from black soybean. Chin J Food Sci, 2010, 10(6):47-53 (in Chinese with English abstract)[本文引用:3]
[26]
阮景军. 苦荞麦胰蛋白酶抑制剂的分离纯化、基因克隆表达及其抗病虫害研究. 四川农业大学博士学位论文, 四川成都, 2011Ruan JJ. Study on Isolation, Purification, Gene Cloning and Expression of Trypsin Inhibitor of Tartary Buckwheat and Resistance to Diseases and Insect Pest. PhD Dissertation of Sichuan Agricultural University, Chengdu, China, 2011 (in Chinese with English abstract)[本文引用:3]
[27]
王静, 朱庆华, 陈杰. 紫花芸豆胰蛋白酶抑制剂的分离纯化及降糖作用研究. 临床合理用药杂志, 2015, 8(9):126-127WangJ, Zhu QH, ChenJ. Purification and partial characterization of trypsin inhibitor from Phaseolus vulgaris. J Clinic Ration Use Drugs, 2015, 8(9):126-127 (in Chinese)[本文引用:1]
[28]
阮景军, 唐自钟, 陈惠, 程剑平. 核桃胰蛋白酶抑制剂的纯化及抑制植物病原真菌研究. 西南农业学报, 2016, 29:826-830Ruan JJ, Tang ZZ, ChenH, Cheng JP. Purification of trypsin inhibitor from walnut and its inhibition on plant pathogenic fungi. Southwest China J Agric Sci, 2016, 29:826-830 (in Chinese with English abstract)[本文引用:1]
[29]
赵亚蕊, 李宗伟, 赵超, 付荣, 王兴华, 李卓玉. 重组绿豆胰蛋白酶抑制剂片段对肠癌细胞SW480迁移的影响. 山西大学学报, 2012, 35:126-129Zhao YR, Li ZW, ZhaoC, FuR, Wang XH, Li ZY. Effect of recombinant mung bean trypsin inhibitor fragment on the migration of SW480 in human colon cancer cells. J Shanxi Univ, 2012, 35:126-129 (in Chinese)[本文引用:2]
[30]
王莎莎, 马岳, 李玉银, 罗深恒, 刁爱坡, 龙民慧. 绿豆胰蛋白酶抑制剂BBI诱导肺腺癌A549细胞凋亡. 华南师范大学学报, 2013, 45(3):91-94Wang SS, MaY, Li YY, Luo SH, Diao AP, Long MH. Apoptosis of lung adenocarcinoma A549 cells induced by mung bean trypsin inhibitor BBI. J South China Norm Univ, 2013, 45(3):91-94 (in Chinese)[本文引用:2]
[31]
GodboleS, KrishnaT, BhatiaC. Purification and characterization of protease inhibitors from pigeon pea (Cajanus cajan (L. ) Millsp) seeds. J Sci Food Agric, 1994, 64:87-93[本文引用:1]
[32]
HuangH, Kwok KC, Liang HH. Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrason Sonochem, 2008, 15:724-730[本文引用:1]
[33]
EI-ShameiZ, Wu JW, Haard NF. Influence of wound injury on accumulation of proteinase inhibitors in leaf and stem tissues of two processing tomato cultivars. J Food Biochm, 1996, 20(5):155-171[本文引用:1]
[34]
江均平, 李春红, 张涛, 云冬梅, 杨雪丰. 绿豆胰蛋白酶抑制剂的含量、多型性及稳定性. 食品科学, 2013, 34(11):32-35Jiang JP, Li CH, ZhangT, Yun DM, Yang XF. Activity, Polymorphism and stability of trypsin inhibitor from mung Beans. Food Sci, 2013, 34(11):32-35 (in Chinese with English abstract)[本文引用:1]
黄惠华, 粱汉华, 郭乾初. 超声波对大豆胰蛋白酶抑制剂活性及二级结构的影响. 食品科学, 2004, 25(3):29-33Huang HH, Liang HH, Guo QC. Different effects of ultrasound on two types of soybean trypsin inhibitors in activity and structures. Food Sci, 2004, 25(3):29-33 (in Chinese with English abstract)[本文引用:1]
[38]
Hilder VA, Gatehouse A M R, Sheerman S E, Barker R F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 300:160-163[本文引用:1]
[39]
柳武革, 薛庆中. 蛋白酶抑制剂及其在抗虫基因工程中的应用. 生物技术通报, 2000, (1):20-25Liu WG, Xue QZ. Proteinase inhibitors and their application in insect-resistant gene engineering. Biotechnol Inform, 2000, (1):20-25 (in Chinese with English abstract)[本文引用:1]