删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘

本站小编 Free考研考试/2021-12-26

王娟1,*, 董承光1,2,*, 刘丽1, 孔宪辉1, 王旭文1, 余渝1,*
1新疆农垦科学院棉花研究所 / 农业部西北内陆区棉花生物学与遗传育种重点实验室, 新疆石河子 832000

2新疆农业大学农学院, 新疆乌鲁木齐 830052

* 通讯作者(Corresponding author): 余渝, E-mail: xjyuyu021@sohu.com 第一作者联系方式: 王娟, E-mail: cottonwj@126.com; 董承光, E-mail: dcg318@163.com
收稿日期:2016-10-12 接受日期:2017-04-20网络出版日期:2017-04-27基金:本研究由新疆生产建设兵团博士资金项目(2013BB001), 新疆生产建设兵团重大科技项目(2016AA001-1)和国家自然科学基金项目(31260340)资助

摘要棉花机械采收对品种的生育期、株型及对脱叶剂敏感度有较高的要求。本研究利用覆盖全基因组有多态性的214对SSR标记对118份含有一个或多个机采性状的种质资源的株高、始节高、始节位、第一果枝平均长度、生育期及脱叶率6个机采相关性状进行关联分析。利用Structure 2.3.1软件进行群体结构分析, 并结合2年2点12个重复的田间表型数据, 采用Tassel 5.0软件的混合线性模型MLM关联定位。结果检测到460个等位基因, 涉及905个基因型, 基因多样性指数平均为0.5151, PIC值平均为0.4587, 基因多样性指数和PIC值都大于平均数的标记有99个, 占总标记数的46.3%, 说明该批SSR标记具有较多的等位变异数和较高的遗传多样性。群体结构分析将118份供试材料划分为4个亚群, 结果显示各类群中材料与地理来源无对应关系。关联分析结果显示4种环境中, 在显著条件下( P<0.05), 共检测到124个与6个机采相关性状相关的位点, 对表型变异解释率范围为2.23%~14.15%; 其中在极显著条件下( P<0.01), 共检测到20个与机采相关性状相关的位点, 对表型变异解释率范围为4.84%~14.15%。基于本研究的结果, 鉴定出典型的载体材料11份, 分别为系7、金垦9号、Y11、豫棉18、AY-4、K2、朝阳棉2号、DZ22、中棉所43、C2和关农长早B14。以上发掘出的控制棉花适宜机采性状的优异等位基因及优异亲本资源, 可为机采棉的分子辅助选择育种提供理论依据。

关键词:棉花; 机采相关性状; 关联分析; 等位变异
Association Analysis and Exploration of Elite Alleles of Mechanical Harvest- Related Traits with SSR Markers in Upland Cotton Cultivars ( Gossypium hirsutum L .)
WANG Juan1,**, DONG Cheng-Guang1,2,**, LIU Li1, KONG Xian-Hui1, WANG Xu-Wen1, YU Yu1,*
1Cotton research Institute, Xinjiang Academy of Agricultural and Reclamation Science / Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Shihezi 832000, China

2College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China

Fund:This study was supported by the Doctorial Found of Xinjiang Production and Construction Corps (2013BB001), the Key S&T Projects of; Xinjiang Production and Construction Corps (2016AA001-1), and the National Natural Science Foundation of China (31260340).
AbstractCotton suitable for mechanical harvest should have higher requirement in traits, for example, shorter growth period, ideal plant type and high sensitivity to defoliant. A total of 214 pairs of SSR with high polymorphism and uniform distribution on whole genome were used to scan polymorphism in 118 cotton varieties with one or more mechanical harvest-related traits. Molecular marker data and six phenotypic traits were analyzed by the method of MLM (mixed linear model) in Tassel 5.0 on the basis of population structure, analysis loci with elite allelic variation and typical materials carrying elite alleles were identified based on phenotypic effect values. We detected 460 alleles and 905 genotypes. The average genetic diversity index was 0.5151, and the average polymorphic information content (PIC) per marker was 0.4587. Ninety-nine markers achieved the aforementioned average values accounted for 46.3% of the total markers, shows that the SSR markers have more allelic variance and higher genetic diversity. All the 118 cotton varieties were divided into four subgroups by analysis of population genetic structure. There was no corresponding relation between each kind of group of materials and the geographical source. A total of 124 loci ( P<0.05) and 20 loci ( P<0.01) associated with mechanical harvest-related traits were detected by association analysis, with explained variance ranging from 2.23% to 14.15% and from 4.84% to 14.15% respectively. Based on the results of this study, we identified 11 typical materials, including Xi 7, Jinken 9, Y11, Yumian 18, AY-4, K2, Chaoyang 2, DZ22, Zhongmiansuo 43, C2, and Guanrongchangzao B14. The elite alleles and resources can be useful for marker-assisted selection breeding.

Keyword:Cotton; Mechanical harvest-related traits; Associate on analysis; Allelic variation
Show Figures
Show Figures








棉花是一种重要的经济作物之一, 集纤维、蛋白、油用于一体[1]。新疆具有棉花生产的优越自然生态条件, 是我国重要的植棉基地; 尤其在新疆生产建设兵团, 棉花种植的高度集约化和规模化, 为棉花机械化采收提供了有利的条件。目前, 新疆生产建设兵团在采棉机械研制、机采棉配套种植技术及机采棉清理加工等技术方面都有长足发展, 但机采棉育种研究相对较滞后, 大田推广种植的大多数品种只能兼顾机采的某个性状, 由于不适应机械采收而影响了棉花产量及品质, 降低了机采棉经济效益, 因此急需加大机采棉育种的研究力度。适宜机采的棉花品种要求具有综合性状, 尤其对生育期、株型及对脱叶剂敏感度要求高, 而这些性状是由较为复杂的数量性状基因控制。
近年来, 随着分子标记技术的不断发展和棉花遗传图谱的不断加密[2, 3], 使得控制棉花重要数量性状基因的发掘研究更为便利, 已有多个实验室报道了利用陆地棉种内不同类型群体构建的遗传图谱进行棉花产量和纤维品质等性状的QTL定位结果[4, 5, 6, 7, 8]。努斯热提· 吾斯曼等[9]通过对机采棉品种新陆早33和陆地棉遗传标准系TM-1构建的F2群体进行QTL定位, 共获得控制3个机采棉性状的5个QTL, 最大解释的表型变异率为12.64%。以上研究只是对机采棉的部分农艺性状对产量的贡献和SSR标记的初步定位, 由于陆陆群体标记的数量有限, 育种研究者对机采性状遗传及QTL所掌握信息量较少, 从而限制了机采棉育种的发展。关联分析方法作为一种剖析复杂数量性状的有效方法, 是目前研究的热点, 此法无需构建作图群体, 应用品种资源群体可以使检测的等位基因数目更多, 同时可以考察多个性状的大多数QTL关联位点及其等位变异, 并且已在玉米[10, 11]、大豆[12, 13]、小麦[14, 15]、大麦[16]等作物中得到应用。在棉花上, 不同国家研究****应用此法通过不同生态区的形态鉴定, 结合SSR标记的基因组扫描, 发掘出主要农艺性状[17, 18, 19]、产量[20, 21, 22]、纤维品质[23, 24]、抗性[25]等的优异等位变异。但目前还未见机采相关性状优异基因发掘方面的报道。
本研究以本单位多年收集的具有一个或多个机采优异性状的陆地棉早熟品种、品系等种质资源为研究群体, 利用覆盖棉花遗传图谱的SSR标记进行全基因组扫描和关联分析, 发掘控制棉花适宜机采性状的优异基因、优异等位变异及优异亲本资源, 以期为机采棉育种中高效发掘和利用这些重要性状提供信息, 并为机采棉分子辅助选择育种提供理论依据。
1 材料与方法1.1 试验材料选取来自新疆农垦科学院棉花研究所种质资源库, 具有一个或多个适宜机采性状的118份优异种质资源, 来源于我国西北内陆棉区、黄河流域棉区、长江流域棉区、北部特早熟棉区以及国外等地(表1)。于2013— 2014年分别在新疆石河子新疆农垦科学院棉花研究所试验基地(北疆)与新疆库尔勒兵团第二师农科所试验基地(南疆)种植试验材料, 采用完全随机区组设计, 双行区, 行长5 m, 株距10 cm, 平均行距35 cm, 3次重复, 人工点播, 膜下滴灌栽培, 以当地常规方法进行田间管理。
表1
Table 1
表1(Table 1)
表1 118份陆地棉种质材料的名称及来源 Table 1 Name and origin of 118 upland cotton varieties
棉区
Cotton growing region
种质份数
No. of
germplasm
品种名称及编号
Name and number
棉区
Cotton growing region
种质份数
No. of
germplasm
品种名称及编号
Name and number
西北内陆棉区North-western inland cotton growing region67金垦9号 Jinken 9 (1)西北内陆棉区
North-western inland cotton growing region
67FY11 (94)
系7 Xi 7 (3)新棉33B Xinmian 33B (99)
北车-1 Beiche 1 (4)C2 (100)
98-17 (5)敦棉2号 Dunmian 2 (103)
系5 Xi 5 (6)5-50 (115)
巴州5409 Bazhou 5409 (8)7-62 (116)
K2 (13)10-55 (117)
系9 Xi 9 (14)新石H7 Xinshi H7 (118)
垦0074 Ken 0074 (15)北部特早熟棉区
North China specific early maturation
region
21辽棉15 Liaomian 15 (10)
609 (16)辽19 Liaomian 19 (25)
巴棉3号 Bamian 3 (22)辽棉18 Liaomian 18 (71)
新陆早13 Xinluzao 13 (28)辽棉19 Liaomian 19 (72)
新陆早19 Xinluzao 19 (29)太原3号 Taiyuan 3 (76)
新陆早20 Xinluzao 20 (30)锦棉2号 Jinmian 2 (77)
新陆早22 Xinluzao 22 (31)朝阳棉2号 Zhaoyangmian 2 (78)
新陆早24 Xinluzao 24 (32)关农早C50 Guannongzao C50 (81)
新陆早26 Xinluzao 26 (33)关农长早B14 Guannongchangzao B14 (82)
新陆早28 Xinluzao 28 (34)晋中200 Jinzhong 200 (86)
新陆早32 Xinluzao 32 (35)辽锦棉6号 Liaojinmian 6 (87)
新陆早33 Xinluzao 33 (36)关农1号 Guannong 1 (104)
新陆早34 Xinluzao 34 (37)锦棉5号 Jinmian 5 (106)
新陆早36 Xinluzao 36 (38)辽棉16 Liaomian 16 (109)
新陆早37 Xinluzao 37 (39)晋棉10号Jinmian 10 (73)
新陆早39 Xinluzao 39 (40)晋棉20 Jinmian 20 (74)
新陆早41 Xinluzao 41 (41)晋棉6号Jinmian 6 (89)
新陆早42 Xinluzao 42 (42)晋棉28 Jinmian 28 (95)
新陆早45 Xinluzao 45 (43)晋棉36 Jinmian 36 (96)
新陆早47 Xinluzao 47 (44)晋棉29 Jinmian 29 (107)
新陆早48 Xinluzao 48 (45)晋棉38 Jinmian 38 (108)
新陆早49 Xinluzao 49 (46)黄河流域棉区
Yellow river valley cotton growing region
17邯4104 Han 4104 (11)
新陆早50 Xinluzao 50 (47)中棉所42 Zhongmiansuo 42 (20)
新陆早51 Xinluzao 51 (48)冀668 Ji 668 (21)
新陆中10 Xinluzhong 10 (49)豫早95-439 Yuzao 95-439 (23)
新陆中14 Xinluzhong 14 (50)中棉所41 Zhongmiansuo 41 (24)
新陆中16 Xinluzhong 16 (51)运早219 Yunzao 219 (75)
新陆中20 Xinluzhong 20 (52)中棉所45 Zhongmiansuo 45 (83)
新陆中26Xinluzhong 26 (53)中棉所58 Zhongmiansuo 58 (84)
新陆中28 Xinluzhong 28 (54)冀合321 Jihe 321 (97)
新陆中29 Xinluzhong 29 (55)陕棉401 Shaanmian 401 (98)
新陆中32 Xinluzhong 32 (56)中棉所43 Zhongmiansuo 43 (101)
新陆中34 Xinluzhong 34 (57)冀棉25 Jimian 25 (105)
新陆中35 Xinluzhong 35 (58)鲁棉研28 Lumianyan 28 (110)
西北内陆棉区North-western inland cotton growing region新陆中40 Xinluzhong 40 (59)鲁棉研32 Lumianyan 32 (111)
新陆中45 Xinluzhong 45 (60)豫棉18 Yumian 18 (112)
新陆中47 Xinluzhong 47 (61)豫棉21 Yumian 21 (113)
惠和67 Huihe 67 (63)运1729 Yun 1729 (114)
抗草甘膦 Kangcaoganlin (64)长江流域棉区
Yangtze river valley cotton growing region
8抗虫棉10号 Kangchongmian 10 (17)
惠和36 Huihe 36 (65)9D208 (18)
金垦1042 Jinkeng 1042 (66)孙棉5号 Sunmian 5 (67)
Bole 3 (68)渝棉1号 Yumian 1 (9)
K7 (69)川737-1 Chuan 737-1 (19)
惠远717 Huiyuan 717 (70)川267 Chuan 267 (26)
敦煌77-116 Dunhuang 77-116 (79)川65 Chuan 65 (27)
甘棉4号 Ganmian 4 (80)盐早1号 Yanzao 1 (85)
盖县65-1 Gaixian 65-1 (88)国外
Foreign cotton growing region
5DZ22 (2)
金垦148-39 Jinkeng 148-39 (90)Jespr (7)
庄稼汉102 Zhuangjiahan 102 (91)Y1 (12)
惠远718 Huiyuan 718 (92)AY-4 (62)
Y11 (93)岱字棉16 Daizimian 16 (102)

表1 118份陆地棉种质材料的名称及来源 Table 1 Name and origin of 118 upland cotton varieties

1.2 表型鉴定在棉花成铃后期分别在各重复中每小区选中间连续10株调查株高、第一果枝始节高度、第一果枝始节位、每果枝第一果节平均长度; 于2013年9月10日和2014年9月10日, 喷施德国拜耳作物科学公司的脱叶剂脱吐隆悬浮剂和乙烯利混合液, 配方为脱吐隆225 g+乙烯利1800 mL hm-2, 分别在当天和施药后15 d调查选定10株的总叶片数, 计算脱叶率; 并记录出苗期、吐絮期和生育期。各性状调查方法参考棉花种质资源描述规范和数据标准[26]
1.3 SSR标记的选择及基因型鉴定参考Zhao等[3]发表的四倍体棉花遗传图谱, 平均每8~10 cM选取一个SSR标记, 并进一步结合钱能等[27]、Song等[28]、薛艳等[29]、Sun等[30]、艾先涛等[31]的研究结果, 选取多态性高的引物557对进行扩增, 最终获得多态性的引物214对。SSR引物序列来自CMD (Cottonmarker database) (http://www. cottonmarker.org/), 由生工生物工程(上海)股份有限公司合成。分子标记名称中的大写字母, 如NAU、BNL等, 代表引物的来源, “ a” 、“ b” 、“ c” 、“ d” 表示一个标记在材料中有多个多态性位点, 位点顺序依次按分子量由大到小排列。DNA提取参照Paterson等[32]发表的CTAB法, SSR实验操作程序和PCR扩增参照Zhang等[33]方法, 并使用毛细管电泳分析仪Fragment Analyzer-XL960 SSR/Tilling对PCR产物参照说明书进行分析, 电泳后数据结果自动存于ProSize 2.0系统软件, 以行、列或单独的样品组合显示在数字胶视图中, 根据胶视图中DNA Ladder以及单个样品不同位点片段大小, 输入预设范围, 系统即可自动读取0、1数据并以Excel形式输出。
1.4 数据分析利用R语言将2年2点4种环境的表型数据进行BLUP分析, 绘制4种环境的表型性状Boxplot图; 利用PowerMarker V 3.25软件[34]进行基因型遗传多样性分析, 获得等位基因频率、等位基因数、基因多样性指数及基因型多态信息含量。利用Structure 2.3.1软件[35]进行群体结构估计, 参数设置为: K值选取1~10, 重复次数为5; 将MCMC (markov chain monte carlo)开始时的不作数迭代设为50 000次, 再将不作数迭代后的MCMC设为50 000次, 其余参数采用软件默认的设置。根据ln P(D)计算Δ K, 依据Δ K值选择一个合适的K[36], 并得到该K值对应的Q矩阵(第i材料的基因组变异来源于第k群体的概率)。
1.5 关联分析及优异等位变异的发掘利用软件Tassel 5.0[37]将基因型数据生成亲缘关系矩阵(K矩阵), 结合等位变异数据、基因型数据、各个环境的表型值、Q矩阵, 利用MLM (mixed linear model)[38]进行性状和标记之间的关联分析, 并计算标记位点在P< 0.05和P< 0.01时对表型变异的贡献率(R2)。在已获得关联位点的基础上, 再进行优异等位变异的发掘, SSR位点等位变异表型效应计算方法为ai = (Σ xij/ni) - (Σ Nk/nk)。其中ai代表第i个等位变异的表型效应值, xij为携带第i个等位变异的第j材料性状表型测定值, ni为具有第i等位变异的材料数, Nk为所有材料的表型测定值, nk为材料数。若ai为正, 则认为该等位变异为增效等位变异, 反之为减效等位变异[39]。最终获得与表型性状显著关联的位点等位变异、表型效应及典型品种。

2 结果与分析2.1 表型性状数据分析118份种质资源材料的6个主要机采性状2年2点4种环境的表型结果如表2所示。各性状平均变异系数的变幅在1.71%~11.12%之间, 其中每果枝第一果节平均长度变异系数最大为11.12%, 说明该性状受生态环境影响较大; 生育期变异系数最小为1.71%, 说明该性状较稳定。6个性状的遗传力变化范围介于0.43~0.72之间, 其中最高的为株高, 值为0.72, 最低的为脱叶率, 值为0.43。
表2
Table 2
表2(Table 2)
表2 118份材料4个环境下表型性状BLUP结果 Table 2 BLUP results of traits for 118 upland cotton varieties in four environments
性状
Trait
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
变异系数CV(%)遗传力
H2
株高 Plant height (cm)49.0776.8664.934.256.550.72
始节高 Height of initial fruiting branch (cm)13.8521.4717.661.387.780.58
始节位 Node of initial fruiting branch4.796.015.410.244.390.54
第一果节平均长度 Average length of initial fruiting branch (cm)4.749.257.140.7911.120.68
生育期 Growth period (d)123.83134.38128.502.201.710.56
脱叶率 Defoliation rate (%)69.8886.2879.582.553.200.43

表2 118份材料4个环境下表型性状BLUP结果 Table 2 BLUP results of traits for 118 upland cotton varieties in four environments

由图1可见, 4个环境中同一性状在同一地点的不同年份变化趋势和幅度较为一致的性状为始节高和脱叶率; 4个环境中同一性状在同一年份的不同地点变化趋势和幅度较为一致的性状为生育期和始节位。总的来看, 6个性状在2个地点不同年份的性状变化趋势相对稳定。
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 2013-2014年在石河子和库尔勒6个表型性状的Boxplot图(箱图两端表示其性状的极值范围; 点圈表示个别极值; 中间直线表示性状中位数。BJ2013、NJ2013、BJ2014、NJ2014分别代表北疆2013 (石河子2013年环境)、南疆2013 (库尔勒2013年环境)、北疆2014 (石河子2014年环境)、南疆2014 (库尔勒2014年环境)。)Fig. 1 Boxplot of six phenotypic traits in Shihezi and Kuerle from 2013 to 2014(Both ends of boxplot indicate the extreme range of traits; the circles of both ends of boxplot indicate single maximum and minimum values; the lines in the middle of boxplot indicate median. BJ2013, NJ2013, BJ2014, and NJ2014 represent Shihezi 2013 environment, Korla 2013 environment, Shihezi 2014 environment, and Korla 2014 environment, respectively.)


2.2 基因型数据分析表3表明, 214个SSR标记位点在118份材料中检测到460个等位基因, 涉及905个基因型, 不同的SSR标记检测到的基因型数目不同, 变幅为2~14个, 平均为4.23个, 其中大于平均数的标记有56个, 占所有多态性标记数的26.2%。214个标记所揭示的基因多样性指数平均为0.5151, 变幅为0.0333~0.8725; PIC值平均为0.4587, 变幅为0.0328~0.8594, 基因多样性指数和PIC值都大于平均数的标记有99个, 占总标记数的46.3%; 如标记NAU3995, 等位基因数和基因型数分别为5和14, 基因多样性和PIC值分别为0.8492和0.8376。总体而言, 本试验选用标记具有较多的等位变异数和较高的基因多样性。
表3
Table 3
表3(Table 3)
表3 214对多态性SSR标记在118份材料中的引物多态性信息 Table 3 Polymorphism information of 214 SSR loci in 118 upland cotton varieties
统计
Statistics
等位基因频率
Major allele frequency
等位基因数
Allele No.
基因型数
Genotype No.
基因多样性
Gene diversity
多态性信息含量
PIC
总数 Sum460905
平均值 Mean0.59900.51510.4587
范围 Range0.1864-0.98311-52-140.0333-0.87250.0328-0.8594

表3 214对多态性SSR标记在118份材料中的引物多态性信息 Table 3 Polymorphism information of 214 SSR loci in 118 upland cotton varieties

2.3 群体结构分析Structure 2.3.1软件群体结构分析结果显示, 随着假定亚群数K值的逐渐增大, ln P(D)值也呈持续增大的趋势, 没有找到一个拐点, 无法判断k的取值。因此, 决定采用通过Δ K来确定群体结构的K[40]。在k=4时, Δ K出现峰值拐点(图2-B), 由此推测该群体材料被分为4个亚群。依据亚群中个体的概率大于等于0.6时, 个体被分配到相应聚类的亚群; 亚群中个体的概率小于等于0.6时, 个体被分配到一个混合的类群的分配原则[41], 分析各供试材料对应的Q值(各供试材料被分配到相应群中的概率)。结果表明118份材料归属为4个亚群(图3)。分别包含34、19、23和12份材料, 4个亚群各占比例为28.8%、16.1%、19.5%和10.2%; 另有30份材料在任意一个亚群内Q值均小于0.6而无法明确其归类, 单独划为一个混合群, 占比例为25.4%。分群结果显示各类群中材料与地理来源无对应关系。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 118份材料的基于群体结构分析的K值与ln P(D)值和∆ K值变化图(A: K值与ln P(D)值的变化图; B: K值与∆ K值的变化图。)Fig. 2 ln P(D) and ∆ K based on population structure analysis for 118 upland cotton varieties(A: magnitude of ln P(D) as a function of K; B: magnitude of ∆ K as a function of K.)

图3
Fig. 3
Figure OptionViewDownloadNew Window
图3 118份材料的群体结构图Fig. 3 Population structure of 118 upland cotton varieties


2.4 机采相关性状的关联定位采用Tassel软件中的混合线性模型(MLM)方法, 以2年2点4种环境的表型数据BLUP分析后的育种值为数据依据, 对118份材料的6个机采相关性状进行关联分析(表4)。结果显示, 4个环境中, 在P< 0.05显著条件下, 检测到124个与6个机采相关性状相关的位点, 对表型变异解释率范围为2.23%~ 14.15%, 平均值为4.73%。而在P< 0.01极显著条件下, 共检测到20个与机采相关性状相关的位点, 对表型变异解释率范围为4.84%~14.15%, 平均值为7.92%。其中与株高相关的位点有3个, 表型变异解释率范围为6.13%~10.27%, 平均值为7.52%, 贡献率最高的位点为NAU3095b; 与果枝始节高相关的位点有2个, 表型变异解释率范围为6.21%~6.44%, 平均值为6.33%, 贡献率最高的位点为CIR0170b; 与始节位相关的位点有4个, 表型变异解释率范围为5.84%~9.67%, 平均值为7.33%, 贡献率最高的位点为CIR0170b; 与每果枝第一果节平均长度相关的位点有6个, 表型变异解释率范围为6.49%~10.68%, 平均值为7.97%, 贡献率最高的位点为DPL0209; 与生育期相关的位点只有1个, 为NAU1362c, 表型变异解释率为4.84%; 与脱叶率相关的位点有4个, 表型变异解释率范围为6.01%~14.15%, 平均值为10.29%, 贡献率最高的位点为NAU2560b。
表4
Table 4
表4(Table 4)
表4 表型性状与标记的关联分析结果 Table 4 Association analysis results of phenotypic traits
性状
Trait
标记
Marker
PR2性状
Trait
标记
Marker
PR2
株高
Plant height
NAU3095b* * 0.00610.27NAU3277b* 0.0264.31
NAU0911b* * 0.0076.16NAU3637b* 0.0264.30
BNL3089c* * 0.0076.13BNL3257c* 0.0264.27
NAU0923b* 0.0115.50NAU1169a* 0.0274.23
NAU6966* 0.0125.38NAU3053a* 0.0274.19
BNL2960a* 0.0155.07NAU1085a* 0.0284.19
NAU1169c* 0.0164.93BNL1521a* 0.0294.13
NAU1362a* 0.0254.25BNL3257a* 0.0304.08
NAU3011* 0.0254.25NAU0911b* 0.0343.89
NAU5379a* 0.0313.93BNL3997c* 0.0373.73
JESPR153c* 0.0333.83BNL3255b* 0.0393.65
NAU5335a* 0.0343.78HAU1292a* 0.0425.51
CIR0307a* 0.0356.06NAU4045c* 0.0443.48
NAU3377* 0.0383.64NAU5189b* 0.0503.30
BNL1521c* 0.0383.61生育期
Growth period
NAU1362c* * 0.0044.84
NAU3053a* 0.0423.47BNL1521b* 0.0173.30
NAU3474* 0.0463.35NAU3881b* 0.0203.12
NAU3074c* 0.0473.31BNL3976a* 0.0203.09
NAU4926c* 0.0505.27NAU0437a* 0.0234.52
始节高
Height of initial fruiting branch
CIR0170b* * 0.0086.44NAU1362b* 0.0242.94
NAU5499b* * 0.0096.21NAU3277b* 0.0242.91
NAU3277a* 0.0175.09NAU0437b* 0.0254.39
NAU6966* 0.0175.09NAU2954b* 0.0282.78
NAU1085b* 0.0224.70BNL3997c* 0.0282.78
BNL0119e* 0.0244.53NAU2954a* 0.0292.75
NAU3036c* 0.0244.52NAU3427b* 0.0292.74
NAU2317c* 0.0264.40NAU3052a* 0.0292.73
BNL1231* 0.0314.13NAU1190b* 0.0302.70
NAU2954b* 0.0324.07NAU5335c* 0.0302.69
NAU1103a* 0.0363.93HAU1355a* 0.0334.23
BNL3452a* 0.0413.72DPL0238b* 0.0352.55
BNL1122b* 0.0453.58NAU4926c* 0.0384.11
始节位
Node of initial
ruiting branch
CIR0170b* * 0.0047.22生育期
Growth period
NAU7121a* 0.0403.80
NAU4926c* * 0.0069.67NAU5335b* 0.0422.37
NAU2954b* * 0.0066.58NAU0911b* 0.0432.35
NAU3277a* * 0.0095.84NAU5233b* 0.0442.31
NAU6966* 0.0214.57NAU2317c* 0.0482.23
NAU3095a* 0.0227.70脱叶率
Defoliation rate
BNL3257a* * 0.0096.01
NAU3016a* 0.0224.47NAU0874a* * 0.0056.97
NAU3095b* 0.0247.50NAU2560a* * 0.00014.05
BNL3140a* 0.0254.29NAU2560b* * 0.00014.15
NAU4926a* 0.0276.65BNL3173a* 0.0443.55
BNL3558a* 0.0304.02BNL2960b* 0.0214.68
HAU2022b* 0.0323.94CIR0183c* 0.0174.98
NAU1302* 0.0343.84CIR0246c* 0.0503.35
NAU5189b* 0.0363.73NAU0874c* 0.0363.86
BNL3976c* 0.0383.67NAU1200a* 0.0224.62
BNL1066b* 0.0393.64NAU1375b* 0.0244.44
NAU1071c* 0.0403.60NAU2671b* 0.0503.36
CIR0170a* 0.0433.48NAU2701c* 0.0314.09
NAU3254b* 0.0453.41NAU2723a* 0.0413.64
NAU3110b* 0.0503.25NAU2954a* 0.0324.03
第一果节平均长度
Average length of initial fruiting branch
BNL3594a* * 0.0056.91NAU3031a* 0.0493.39
HAU1952a* * 0.0059.32NAU3052a* 0.0294.20
BNL3089c* * 0.0066.49NAU3277a* 0.0433.59
NAU3800b* * 0.00710.68NAU3277b* 0.0224.63
NAU1274a* * 0.0088.56NAU3538b* 0.0274.27
DPL0209* * 0.0095.89NAU4926a* 0.0296.31
HAU1292b* 0.0117.93NAU4926b* 0.0415.69
NAU3031a* 0.0174.97NAU4926c* 0.0435.61
NAU1085c* 0.0184.88NAU4926d* 0.0336.11
NAU3053b* 0.0224.51NAU5262a* 0.0353.91
* and * * represent significance at the 0.05 and 0.01 probability levels, respectively.
* * * 分别表示在0.05水平和0.01水平上显著相关。

表4 表型性状与标记的关联分析结果 Table 4 Association analysis results of phenotypic traits

表5表明, 有17个标记位点同时与2个以上性状相关联。其中NAU4926c同时与株高、始节位、生育期、脱叶率4个性状相关联; 5个标记位点NAU0911b、NAU2954b、NAU3277a、NAU3277b、NAU6966同时与3个性状相关联; 11个标记位点BNL3089c、BNL3257a、BNL3997c、CIR0170b、NAU2317c、NAU3031a、NAU3052a、NAU3053a、NAU3095b、NAU4926a、NAU5189b同时与2个性状相关联。
表5
Table 5
表5(Table 5)
表5 4个环境下与2个以上性状关联的位点 Table 5 Loci associated with more than two phenotypic traits in four environments (P< 0.05)
位点
Locus
株高
Plant height
始节高
Height of initial
fruiting branch
始节位
Node of initial fruiting branch
第一果枝平均长度
Average length of initial
fruiting branch
生育期
Growth period
脱叶率
Defoliation rate
BNL3089c
BNL3257a
BNL3997c
CIR0170b
NAU0911b
NAU2317c
NAU2954b
NAU3031a
NAU3052a
NAU3053a
NAU3095b
NAU3277a
NAU3277b
NAU4926a
NAU4926c
NAU5189b
NAU6966

表5 4个环境下与2个以上性状关联的位点 Table 5 Loci associated with more than two phenotypic traits in four environments (P< 0.05)

2.5 优异等位变异和优良种质资源材料的发掘依据关联分析结果, 与6个主要机采性状显著关联(P< 0.01)的SSR位点有20个, 鉴定典型的载体材料11份(表6), 分别为系7、金垦9号、Y11、豫棉18、AY-4、K2、朝阳棉2号、DZ22、中棉所43、C2和关农长早B14。
表6
Table 6
表6(Table 6)
表6 与机采性状显著关联的位点等位变异对应的表型效应 Table 6 Phenotypic effect of marker alleles at loci significantly associated with mechanical harvest-related traits
性状
Trait
位点等位变异
Favorable allele
表型效应
Phenotypic effect
典型材料
Representative accessions
株高
Plant height (cm)
NAU3095b0.84C2, Y11, 新陆早51
C2, Y11, Xinluzao 51
NAU0911b0.31C2, Y11, 10-55
BNL3089c-1.65关农长早B14, 盖县65-1, 晋棉6号
Guannongchangzao B14, Gaixian 65-1, Jinmian 6
始节高
Height of initial fruiting
branch (cm)
CIR0170b0.92AY-4, 鲁棉研28, 新陆中35
AY-4, Lumianyan 28, Xinluzhong 35
NAU5499b-0.52朝阳棉2号, 辽锦棉6号, 中棉所58
Chaoyangmian 2, Liaojinmian 6, Zhongmiansuo 58
始节位
Node of initial fruiting
branch
CIR0170b0.20AY-4, 鲁棉研28, 新陆中14
AY-4, Lumianyan 28, Xinluzhong 14
NAU2954b0.04AY-4, Bole 3, 鲁棉研32
AY-4, Bole 3, Lumianyan 32
NAU3277a0.04AY-4, Bole 3, 鲁棉研32
AY-4, Bole 3, Lumianyan 32
NAU4926c-0.12K2, 朝阳棉2号, 晋棉6号
K2, Chaoyanmian 2, Jinmian 6
第一果枝平均长
Average length of initial
fruiting branch (cm)
DPL02090.17Y11, 新陆早49, 金垦9号
Y11, Xinluzao 49, Jinken 9
NAU3800b0.10金垦9号, K7, 敦煌77-116
Jinken 9, K7, Dunhuang 77-116
NAU1274a-0.24系7, 晋棉6号, Jespr
Xi 7, Jinmian 6, Jespr
BNL3089c-0.34系7, 盖县65-1, 晋棉6号
Xi 7, Gaixian 65-1, Jinmian 6
BNL3594a-0.49系7, 晋棉6号, 中棉所58
Xi 7, Jinmian 6, Zhongmiansuo 58
HAU1952a-0.58系7, 晋棉6号, 新陆早33
Xi 7, Jnmian 6, Xinluzao 33
生育期
Growth period (d)
NAU1362c0.60豫棉18, AY-4, 新陆中35
Yumian 18, AY-4, Xinluzhong 35
脱叶率
Defoliation rate (%)
NAU2560b7.77中棉所43, 陕棉403, 新陆中16
Zhongmiansuo 43, Shaanmian 403, Xinluzhong 16
NAU2560a-2.69DZ22, 辽锦棉6号, 锦棉5号
DZ22, Liaojinmian 6, Jinmian 5
BNL3257a-5.05DZ22, 辽锦棉6号, 锦棉5号
DZ22, Liaojinmian 6, Jinmian 5
NAU0874a-5.94DZ22, 辽锦棉6号, 锦棉5号
Liaojinmian 6, Jinmian 5

表6 与机采性状显著关联的位点等位变异对应的表型效应 Table 6 Phenotypic effect of marker alleles at loci significantly associated with mechanical harvest-related traits

株高关联位点等位变异中, NAU3095b是增效表型效应(+0.84 cm)最大的等位变异, 典型材料是C2; BNL3089c是减效表型效应(-1.65 cm)最大的等位变异, 典型材料是关农长早B14。始节高关联位点等位变异中, CIR0170b是增效表型效应(+0.92 cm)最大的等位变异, 典型材料是AY-4; NAU5499b是减效表型效应(-0.52 cm)最大的等位变异, 典型材料是朝阳棉2号。始节位关联位点等位变异中, CIR0170b是增效表型效应(+0.20 cm)最大的等位变异, 典型材料是AY-4; NAU4926c是减效表型效应(-0.12 cm)最大的等位变异, 典型材料是K2。第一果枝平均长度关联位点等位变异中, DPL0209是增效表型效应(+0.17 cm)最大的等位变异, 典型材料是Y11; HAU1952a是减效表型效应(-0.58 cm)最大的等位变异, 典型材料是系7。生育期关联位点等位变异只有1个NAU1362c, 表现为增效表型效应(+0.60 cm), 典型材料是豫棉18。脱叶率关联位点等位变异中, NAU2560b是增效表型效应(+7.77 cm)最大的等位变异, 典型材料是中棉所43; NAU0874a是减效表型效应(-5.94 cm)最大的等位变异, 典型材料是DZ22。

3 讨论中国新疆地广人稀, 植棉劳动力紧张, 人工采棉已经不能适应棉花规模化发展的需要, 因此, 大力发展机采棉技术是提高棉花生产经济效益, 推进新疆农业现代化的重大举措。从棉花品种角度出发, 机采棉品种要适应机采, 除达到一般品种的产量、品质特性外, 还需要品种具有较好的早熟性, 株型紧凑, 果枝始节位高, 对脱叶剂敏感等关键机采性状, 才能达到农机农艺融合, 提高机采棉经济效益。本研究中考查的6个性状中, 株高、始节高、始节位、每果枝第一果节平均长度等性状反映合理株型性状, 生育期性状反映早熟性性状, 脱叶率反映对脱叶剂敏感性程度。对这6个性状进行关联分析, 挖掘优异等位变异, 对机采棉育种意义较大。
群体结构是影响关联分析的主要因素之一。群体结构的存在会通过影响位点LD水平而影响关联分析的准确性, 造成关联分析出现假阳性[42], 即检测到的多态性位点和表型性状的关联不是由功能位点造成的, 而是由亚群的存在所导致。已有研究表明, 同时使用群体结构信息(Q值)和品种间亲缘关系(Kinship值)的MLM (Q+K)模型要优于单独使用Q值或Kinship值的GLM(Q)和MLM(K)模型[22, 43]。本研究对多位点基因型数据采用了Structure软件中的混合线性模型(MLM)(Q+K)进行群体结构的分析和校正, 计算每个材料归入各亚群的概率(Q值), 并将其作为协变量纳入回归分析, 有效的矫正了亚群存在导致的伪关联。本研究所选118份材料的等位变异频率特征类型数k = 4时, Δ k达到峰值拐点, 即可将所选材料分为4个亚群。但其所分亚群与所选材料的地理来源无直接关系。其原因可能为各生态棉区间棉花品种交流较为广泛, 造成遗传背景较为复杂, 不能完全与生态区来源或系谱来源对应。
本研究共检测到124个与6个机采相关性状相关的位点, 其中在P< 0.01极显著条件下, 共检测到20个与机采相关性状相关的位点, 对表型变异解释率平均值为7.92%, 在机采棉育种实践中可利用这些等位基因进行材料的等位条带分子标记辅助选择研究; 另外, 本研究在所有检测到的关联位点中, 有17个标记位点同时与2个以上性状相关联, 其中NAU4926c位点同时与4个性状相关联。表明这些标记可以用于同时改良多个育种目标性状, 以实现多个育种目标性状的聚合育种研究。
挖掘与优异机采性状相关的优异种质是机采棉育种研究的重要内容之一。本研究在关联分析基础上, 挖掘得到11份含有优异机采性状的典型材料。其中C2材料含有与株高性状相关的优异等位基因, AY-4材料聚合与始节高和始节位性状相关的优异等位基因, 系7材料含有与第一果枝平均长度性状相关的优异等位基因, 中棉所43品种含有与脱叶率性状相关的优异等位基因, 这些可作为机采棉育种材料中株型紧凑、果枝始节位高及对脱叶剂敏感的骨干亲本。当然, 上述所挖掘的优异等位基因及载体材料还需进一步在大群体和更多环境中验证。
4 结论4种环境中, 在显著条件下(P< 0.05), 共检测到124个与6个机采相关性状相关的位点, 对表型变异解释率范围为2.23%~14.15%; 其中在极显著条件下(P< 0.01), 共检测到20个与机采相关性状相关的位点, 对表型变异解释率范围为4.84%~14.15%; 鉴定出典型的载体材料11份, 分别为系7、金垦9号、Y11、豫棉18、AY-4、K2、朝阳棉2号、DZ22、中棉所43、C2和关农长早B14。
致谢: 感谢华中农业大学林忠旭教授和聂新辉博士, 中国农业大学杨晓红教授和徐根博士在数据分析方面给予的指导和帮助。
The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003. p 562
Cotton Research Institute, the Chinese Academy of Agricultural Sciences. Genetics and Breeding of Cotton in China. Jinan: Shand ong Science&Technology Press, 2003. p 562 (in Chinese)[本文引用:1]
[2]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527-541[本文引用:1]
[3]Zhao L, Lyu Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012, 13: 1-17[本文引用:2]
[4]范术丽, 喻树迅, 宋美珍, 原日红. 短季棉早熟性的分子标记及QTL定位. 棉花学报, 2006, 18: 135-139
Fan S L, Yu S X, Song M Z, Yuan R H. Construction of molecular linkage map and QTL mapping for earliness in short-season cotton. Cotton Sci, 2006, 18: 135-139 (in Chinese with English abstract)[本文引用:1]
[5]张先亮, 王坤波, 宋国立, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红. 陆地棉重组近交系“中G6”QTL的初步定位. 棉花学报, 2008, 20: 192-197
Zhang X L, Wang K B, Song G L, Liu F, Li S H, Wang C Y, Zhang X D, Wang Y H. Primary QTL mapping of upland cotton RIL CRI-G6 by SSR marker. Cotton Sci, 2008, 20: 192-197 (in Chinese with English abstract)[本文引用:1]
[6]Chen H, Qian N, Guo W Z, Song Q P, Li B C, Deng F J, Dong C G, Zhang T Z. Using three selected overlapping RILs to fine-map the yield component QTL on Chro. D8 in upland cotton. Euphytica, 2010, 76: 321-329[本文引用:1]
[7]Liu R Z, Ai N J, Zhu X X, Liu F J, Guo W Z, Zhang T Z. Genetic analysis of plant height using two immortalized populations of “CRI12×J8891” in Gossypium hirsutum L. Euphytica, 2014, 196: 51-61[本文引用:1]
[8]Ning Z Y, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014, 195: 143-156[本文引用:1]
[9]努斯热提·吾斯曼, 喻树迅, 范术丽, 庞朝友. 机采棉主要农艺性状相关性分析和QTL定位. 新疆农业科学, 2012, 49: 791-795
Nusurat O, Yu S X, Fan S L, Pang C Y. Correlation of agronomic characters and QTL mapping in mechanical harvest cotton ( Gossypum hirsutum L. ) . Xinjiang Agric Sci, 2012, 49: 791-795 (in Chinese with English abstract)[本文引用:1]
[10]Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at phenylalanine ammonia-lyase locus in European maize ( Zea mays L. ) inbreds. Theor Appl Gent, 2007, 114: 307-319[本文引用:1]
[11]Szalma S J, Buckler I V E S, Snook M E, McMullen M D. Association analysis of cand idate genes for maysin and chlorogenic
acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324-1333
[本文引用:1]
[12]Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean ( Glycine max L. Merr. ) advanced breeding lines. Theor Appl Genet, 2008, 116: 777-787[本文引用:1]
[13]Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785-794[本文引用:1]
[14]Patel J S, Mamidi S, Bonman J M, Adhikari T B. Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora tritici- repentis. Crop Sci, 2013, 53: 842-852[本文引用:1]
[15]Narayanan S, Vara Prasad P V, Shroyer K, Gill B S, Fritz A. Characterization of a spring wheat association mapping panel for root traits. Agron J, 2014, 106: 1593-1604[本文引用:1]
[16]Malysheva-Otto L V, Ganal M W, Roder M S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm( Hordeum vulgare L. ). BMC Genet, 2006, 7: 6[本文引用:1]
[17]Liu G Z, Mei H X, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015, 205: 637-645[本文引用:1]
[18]Li C Q, Zhang J B, Hu G H, Fu Y Z, Wang Q L. Association mapping and favorable allele mining for node of first fruiting/sympodial branch and its height in upland cotton ( Gossypium hirsutum L. ). Euphytica, 2016, 210: 57-68[本文引用:1]
[19]Li C Q, Ai N J, Zhu Y J, Wang Y Q, Chen X D, Li F, Hu Q Y, Wang Q L Association mapping and favorable allele exploration for plant architecture traits in Upland cotton ( Gossypium hirsutum L. ) accessions. J Agric Sci, 2016, 154: 567-583[本文引用:1]
[20]聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭. 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学, 2015, 48: 2891-2910
Nie X H, You C Y, Bao J, Li X F, Hui H, Liu H L, Qin J H, Lin Z X. Exploration of elite alleles of agronomic and fiber quality traits in Xinluzao cotton varieties by association analysis. Sci Agric Sin, 2015, 48: 2891-2910 (in Chinese with English abstract)[本文引用:1]
[21]Mei H X, Zhu X F, Zhang T Z. Favorable QTL alleles for yield and its components identified by association mapping in Chinese upland cotton cultivars. PLoS One, 2013, 8: e82193[本文引用:1]
[22]Qin H D, Chen M, Yi X D, Bie S, Zhang C, Zhang Y C, Lan J Y, Meng Y Y, Yuan Y L, Jiao C H. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One, 2015, 10: e0118073[本文引用:2]
[23]Cai C P, Ye W X, Zhang T Z, Guo W Z. Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/accessions ( Gossypium hirsutum L. ). J Integr Plant Biol, 2014, 56: 51-62[本文引用:1]
[24]Abdurakhmonov I Y, Kohel R J, Yu J Z, Pepper A E, Abdullaev A A, Kushanov F N, Salakhutdinov I B, Buriev Z T, Ssha S, Scheffler B E. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics, 2008, 92: 478-487[本文引用:1]
[25]Zhao Y, Wang H, Chen W, Li Y H. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton ( Gossypium hirsutum L. ) germplasm population. PLoS One, 2014, 9: e86308[本文引用:1]
[26]杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005
Du X M, Zhou Z L . Descriptors and data stand ard for cotton (Gossypium spp. ). Beijing: China Agriculture Press, 2005 (in Chinese)[本文引用:1]
[27]钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文, 江苏南京, 2009
Qian N. Genetic Diversity and Association of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2009 (in Chinese with English abstract)[本文引用:1]
[28]Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci, 2009, 177: 317-323[本文引用:1]
[29]薛艳, 张新宇, 沙红, 李雪源, 孙杰, 李保成. 新疆早熟棉品种SSR指纹图谱构建与品种鉴别. 棉花学报, 2010, 22: 360-366
Xue Y, Zhang X Y, Sha H, Li X Y, Sun J, Li B C. Construction of fingerprinting map based on SSR and identification of cultivars for earliness cultivars in upland cotton in Xinjiang. Cotton Sci, 2010, 22: 360-366 (in Chinese with English abstract)[本文引用:1]
[30]Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569-582[本文引用:1]
[31]艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种SSR遗传多样性分析. 作物学报, 2014, 40: 369-379
Ai X T, Liang Y J, Sha H, Wang J Z, Zheng J Y, Tu-Er-Xun-Jiang, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers. Acta Agron Sin, 2014, 40: 369-379 (in Chinese with English abstract)[本文引用:1]
[32]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton ( Gossypium spp. ) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol, 1993, 11: 122-127[本文引用:1]
[33]张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测, 棉花学报, 2000, 12: 267-269
Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267-269 (in Chinese with English abstract)[本文引用:1]
[34]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129[本文引用:1]
[35]Pritchard J K, Wen X, Falush D. http://pritch.bsd.uchicago.edu/structure.html,2009[本文引用:1]
[36]Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620[本文引用:1]
[37]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635[本文引用:1]
[38]Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutumL. variety germplasm. Genetica, 2009, 136: 401-417[本文引用:1]
[39]文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: II. 优异等位变异的发掘. 作物学报, 2008, 34: 1339-1349
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339-1349 (in Chinese with English abstract)[本文引用:1]
[40]Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620[本文引用:1]
[41]Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511-526[本文引用:1]
[42]Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Human Genet, 2000, 67: 170-181[本文引用:1]
[43]Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsisexample of association mapping in structured samples. PLoS Genet, 2007, 3: 0071-0082[本文引用:1]
相关话题/材料 棉花 环境 数据 生育