关键词:烟草; 基因型; 苗期; 氮素; 氮高效 Screening of Tobacco Genotypes Tolerant to Low-Nitrogen and Their Nitrogen Efficiency Types ZHONG Si-Rong1, CHEN Ren-Xiao2, TAO Yao1, GONG Si-Yu1, HE Kuan-Xin2, ZHANG Qi-Ming2, ZHANG Shi-Chuan1, LIU Qi-Yuan1,* 1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province / College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
2Jiangxi Leaf Tobacco Research Institute, Nanchang 330045, China
Fund:This study was supported by the Jiangxi Provincial Tobacco Monopoly Bureau of Science and Technology Project (201401001). AbstractGenotypes with tolerance to low nitrogen (N) are preferred in improving N use efficiency of tobacco and reduce nitrogen pollution. In this study, seedlings of 74 tobacco genotypes were evaluated in a hydroponic experiment with low-N (0.5 mmol L-1) and normal-N (5.0 mmol L-1) treatments, and the genotypes were evaluated according to descriptive statistics, factor analysis and cluster analysis. The root volume, root biomass, N accumulation in stalk and leaf, and aboveground biomass varied greatly across genotypes with the variation coefficients of 0.37-0.68 in low-N treatment and 0.38-0.64 in normal-N treatment. The principal components under both N levels were similar, showing that the N accumulation in stalk and leaf and aboveground biomass were important components. According to evaluation indexes Heatmap clustering and scatter diagram analysis of N efficiency comprehensive value, 15 low-N tolerant genotypes were screened out, accounting for 20.3% of varieties tested, including eight genotypes of high-efficiency under low-N but low-efficiency under normal-N, six genotypes of low-efficiency under both low-N and normal-N, and one genotype of high-efficiency under both low-N and normal-N. In addition, eight genotypes were found to be sensitive to low-N, including six genotypes of low-efficiency under low-N but high-efficiency under normal-N and two genotypes of low-efficiency under both low-N and normal-N. We primarily identified 14P9 as the low-N tolerant and N-efficient tobacco and Zhongyan 100 and K394 as the low-N sensitive and N-inefficient tobacco.
Keyword:Tobacco; Genotype; Seedling stage; Nitrogen; High nitrogen efficiency Show Figures Show Figures
表1 不同供氮水平下烟草苗期性状指标的变化 Table 1 Changes of indicators in tobacco seedlings under different nitrogen levels
指标 Index
低氮 Low nitrogen
正常氮 Normal nitrogen
变幅 Range
均值 Average
标准差 SD
变异系数CV
变幅 Range
均值 Average
标准差 SD
变异系数 CV
SPAD值 SPAD value
9.80-21.47
16.38 aA
1.82
0.11
13.10-30.17
21.30 bB
3.02
0.14
茎叶氮素含量 Stalk and leaf nitrogen content (%)
2.18-4.04
2.86 aA
0.45
0.16
2.90-4.90
3.80 bB
0.35
0.09
地上部生物量 Aboveground biomass per plant (g)
0.08-0.55
0.29 aA
0.10
0.37
0.16-1.04
0.50 bB
0.19
0.38
茎叶氮累积量 Stalk and leaf nitrogen accumulation (mg plant-1)
3.12-16.46
7.96 aA
2.97
0.37
5.98-40.16
19.01 bB
7.48
0.39
根系生物量 Root biomass per plant (g)
0.01-0.10
0.03 aA
0.02
0.57
0.01-0.10
0.03 aA
0.02
0.61
单株叶鲜重 Leaf fresh weight per plant (g)
2.14-9.64
5.10 aA
1.64
0.32
2.13-13.97
7.65 bB
2.51
0.33
单株茎鲜重 Stalk fresh weight per plant (g)
0.41-3.89
1.95 aA
0.78
0.40
0.84-6.53
3.79 bB
1.37
0.36
株高 Plant height (cm)
2.43-24.23
13.45 aA
4.77
0.35
6.57-31.40
18.73 bB
4.94
0.26
茎粗 Stalk diameter (mm)
3.07-5.71
4.32 aA
0.55
0.13
2.93-6.40
4.78 bB
0.72
0.15
根系体积 Root volume (cm3)
0.13-2.63
0.66 aA
0.44
0.68
0.10-1.63
0.54 aA
0.35
0.64
Values followed by different capital and small letters are significantly different at the 0.01 and 0.05 probability level, respectively. SD: standard deviation; CV: coefficient of variation. 标以不同大、小写字母的数值间差异分别达到0.01和0.05显著水平。
表1 不同供氮水平下烟草苗期性状指标的变化 Table 1 Changes of indicators in tobacco seedlings under different nitrogen levels
图1 不同基因型烟草指标相对值聚类图Fig. 1 Heatmap clustering for relative indicatiors in different tobacco genotypes
表3 Table 3 表3(Table 3)
表3 不同供氮条件下烟草苗期地上部生物量和茎叶氮积累量相对值 Table 3 Relative values of aboveground biomass and stalk leaf nitrogen accumulation under different nitrogen levels at seedling stage
品种 Variety
指标相对值Relative value
品种 Variety
指标相对值Relative value
地上部生物量 AB
茎叶氮累积量 SLNA
地上部生物量 AB
茎叶氮累积量 SLNA
安选4号 Anxuan 4
0.38
0.28
Oxford 2028
0.87
1.01
闽烟3号 Minyan 3
0.37
0.33
RG11
0.57
0.36
云选2号 Yunxuan 2
0.41
0.26
RG17
0.71
0.48
大白筋599 Dabaijin 599
0.76
0.50
云烟317 Yunyan 317
0.32
0.18
革新3号 Gexin 3
0.77
0.46
CV70
0.80
0.52
单育2号 Danyu 2
0.43
0.28
抗88 Kang 88
0.74
0.53
净叶黄 Jingyehuang
0.42
0.26
中烟104 Zhongyan 104
0.54
0.38
春雷3号 Chunlei 3
0.69
0.42
中烟101 Zhongyan 101
0.40
0.40
Coker 347
0.90
0.51
鲁烟2号 Luyan 2
0.86
0.57
DB101
0.80
0.54
ZC01
0.40
0.34
NC95
0.76
0.54
14P4
0.94
0.65
G28
0.77
0.50
14P5
0.41
0.26
Ti245
0.98
0.72
14P9
0.82
0.68
Ti448A
0.55
0.34
云烟87 Yunyan 87
0.64
0.50
86-3002
0.36
0.29
14P13
0.47
0.47
永定1号 Yongding 1
0.62
0.45
14P14
0.60
0.55
云烟2号 Yunyan 2
0.88
0.63
CB1
0.33
0.26
Coker 176
0.29
0.18
14P11
0.69
0.46
K326
0.42
0.34
红花大金元Honghuadajinyuan
0.55
0.42
K394
0.19
0.15
14P10
0.81
0.66
K399
0.72
0.42
14P18
0.94
0.66
NC82
0.63
0.51
NX326
0.65
0.46
NC567
0.45
0.32
HY06
0.93
0.73
G80
0.60
0.41
MSB25
0.38
0.44
台烟7号 Taiyan 7
0.69
0.46
MSB47
0.48
0.43
中烟90 Zhongyan 90
0.55
0.46
MSB31
0.60
0.41
CV87
0.29
0.27
MS39
0.68
0.53
云花1号 Yunhua 1
0.46
0.35
MSB52
0.45
0.30
龙岩C2 Longyan C2
0.77
0.48
MSB44
0.52
0.44
Coker 139
0.70
0.42
MSB58
0.63
0.51
中烟98 Zhongyan 98
0.38
0.32
NordelB
0.31
0.28
中烟100 Zhongyan 100
0.21
0.21
MSKCH1
0.77
0.92
G80B
0.66
0.47
云烟97 Yunyan 97
0.58
0.48
岩烟97 Yanyan 97
0.33
0.19
云烟98 Yunyan 98
0.86
0.68
C151
0.80
0.73
云烟99 Yunyan 99
0.56
0.36
96019
0.87
0.92
云烟105 Yunyan 105
0.97
0.55
K346
0.41
0.29
FL57
0.74
0.58
AB: aboveground biomass; SLNA: stalk and leaf nitrogen accumulation.
表3 不同供氮条件下烟草苗期地上部生物量和茎叶氮积累量相对值 Table 3 Relative values of aboveground biomass and stalk leaf nitrogen accumulation under different nitrogen levels at seedling stage
Sreeramamuthy CH, Arishukumar PH, Nageswararao CR. Change in concentration of nitrogenous constituents in flue-cured tobacco leaf as affected by nitrogen fertilization in Vertisols. Tob Res, 1996, 22: 22-25[本文引用:1]
[2]
Drake MP, Vann MC, Fisher LR. Influence of nitrogen application rate on the yield, quality, and chemical components of flue-cured tobacco: II. Application method. Tob Sci, 2015, 52: 26-34[本文引用:1]
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20: 783-795 Ju XT, Gu BJ. Status-quo, problem and trend of nitrogen fertilization in China. J Plant Nutr Fert, 2014, 20: 783-795 (in Chinese with English abstract)[本文引用:1]
刘辉, 赵竹青. 植物氮营养高效基因型筛选指标研究进展. 安徽农业科学, 2006, 34: 3265-3267 LiuH, Zhao ZQ. Research progress in the selecting stand ard of the plant genotype with nitrogen efficiency. J Anhui Agric Sci, 2006, 34: 3265-3267 (in Chinese with English abstract)[本文引用:1]
[7]
王进军, 黄瑞冬. 玉米氮效率及其研究进展. 玉米科学, 2005, 13(1): 89-92 Wang JJ, Huang RD. Nitrogen use efficiency and its research advances in maize. J Maize Sci, 2005, 13(1): 89-92 (in Chinese with English abstract)[本文引用:1]
徐福荣, 汤翠凤, 余藤琼, 严红梅, 周海, 李俊, 蒋会兵, 叶昌荣, 戴陆园. 利用叶绿素仪SPAD值筛选耐低氮水稻种质. 分子植物育种, 2005, 3: 695-700 Xu FR, Tang CF, Yu TQ, Yan HM, ZhouH, LiJ, Jiang HB, Ye CR, Dai LY. Screening of rice germplasms for tolerance to low-nitrogen using SPAD-value by chlorophyll meter. Mol Plant Breed, 2005, 3: 695-700 (in Chinese with English abstract)[本文引用:1]
[10]
黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001, 7: 293-297 Huang GB, Zhang EH, Hu HJ. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. J Plant Nutr Fert, 2001, 7: 293-297 (in Chinese with English abstract)[本文引用:1]
[11]
Machado AT, Magalhaes JR, MagnavacaR, Silva MR. Enzyme activities involved with nitrogen metabolism in different maize genotypes. Rev Bras Fisiol Veg, 1992, 4: 45-47[本文引用:1]
[12]
Muchow RC. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment III Grain yield and nitrogen accumulation. Field Crops Res, 1988, 18: 31-43[本文引用:1]
梁景霞, 梁康迳, 林文雄, 祁建民, 陈顺辉, 丘贵盛. 烟草氮素营养的基因型差异初探. 中国烟草学报, 2007, 13(6): 36-40 Liang JX, Liang KJ, Lin WX, Qi JM, Chen SG, Qiu GS. Primary study of genotypic differences in nitrogen nutrition in tobacco germplasms. Acta Tab Sin, 2007, 13(6): 36-40 (in Chinese with English abstract)[本文引用:1]
刘巧真, 郭芳阳, 梁涛, 曹华民, 吴照辉, 闫小毛, 陈廷贵. 幼苗期不同烤烟品种对氮营养响应的差异研究. 湖北农业科学, 2015, 54: 2950-2953 Liu QZ, Guo FY, LiangT, Cao HM, Wu ZH, Yan XM, Chen TG. Study on response of different flue-cured tobacco to nitrogen nutrition at seedling stage. Hubei Agric Sci, 2015, 54: 2950-2953 (in Chinese with English abstract)[本文引用:1]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征. 作物学报, 2012, 38: 648-656 LiM, Zhang HC, YangX, Ge MJ, MaQ, Wei HY, Dai QG, Huo ZY, XuK, Cao LQ, WuH. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2012, 38: 648-656 (in Chinese with English abstract)[本文引用:1]
姜爽, 吴凤芝, 关颂娜, 于敏锐. 耐低氮胁迫黄瓜品种的筛选. 中国蔬菜, 2012, (8): 51-56 JiangS, Wu FZ, Guan SN, Yu MR. Screening of cucumber cultivars for tolerance to low nitrogen stress. China Veget, 2012, (8): 51-56 (in Chinese with English abstract)[本文引用:1]
[29]
EghballB, Maranville JW. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stress. Agron J, 1993, 85: 147-152[本文引用:1]
春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615-619 ChunL, Chen FJ, Zhang FS, Mi GH. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci, 2005, 11: 615-619 (in Chinese with English abstract)[本文引用:1]
[33]
裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物营养与肥料学报, 2007, 13: 93-98 Pei XX, Wang JA, Dang JY, Zhang DY. An approach to the screening index for low nitrogen tolerant wheat genotype. Plant Nutr Fert Sci, 2007, 13: 93-98 (in Chinese with English abstract)[本文引用:1]
崔文芳, 高聚林, 王志刚, 崔超, 胡树平, 于晓芳, 孙继颖, 苏治军. 玉米自交系氮效率基因型差异分析. 玉米科学, 2013, 21(3): 6-12 Cui WF, Gao JL, Wang ZG, CuiC, Hu SP, Yu XF, Sun JY, Su ZJ. Analysis on genotypic difference in nitrogen efficiency of maize inbred lines. J Maize Sci, 2013, 21(3): 6-12 (in Chinese with English abstract)[本文引用:1]