关键词:间作; 密度; 根间作用; 产量; 产量构成 Synergistic Effect of Root Interaction and Density on Yield and Yield Components of Wheat/Maize Intercropping System WANG Yi-Fan, QIN Ya-Zhou, FENG Fu-Xue, ZHAO Cai, YU Ai-Zhong, LIU Chang, CHAI Qiang* Gansu Provincial Key Laboratory of Arid Land Crop Science / Agronomy College, Gansu Agricultural University, Lanzhou 730070, China Fund:This study was supported by the National Natural Science Foundation of China (31360323) and the National Key Technology R&D Program of China (2012BAD14B10) AbstractAs planting density is a key strategy for improvement of yield and efficiencies in intercropping, the present study was conducted to explore the mechanism of yield response to close planting in intercropping systems. The field experiment was carried out in Hexi oasis irrigation area from 2014 to 2015, of which, three root partition patterns, i.e. no root barrier, nylon mesh barrier (obstructs overlapping of wheat roots with maize roots, but allows water and nutrients to exchange through the nylon mesh) and plastic sheet barrier (prevents water and nutrients from exchange between the two intercrops and no overlapping of wheat roots with maize roots), were combined with two planting density levels, i.e., 90 000 plants ha-1 and 105 000 plants ha-1. The main objective was to determine the effect of above- and below-ground interrelation on grain yield and yield components. The results showed that a complete effect of above- and below-ground interaction increased the intercropping-advantage (i.e. LER) by 48.3% compared to sole cropping. Besides, increase of maize density would led to the LER increased by 9.7%. Generally, the below-ground interaction attributed 21.0% to the LER, and with maize density increased, the contribution rate was increased by 5%. The compensation effect of root overlapping and the complementary of moisture/nutrient exchange attributed 9.0% and 11.1% to the LER, respectively. A complete effect of below- and above-ground interaction also had the highest grain yield, which was increased by 58.8%-62.2% under the higher density and by 36.1%-36.8% under the lower density, compared to the corresponding monocultures. On average, the below-ground interaction attributed 26.5%-31.5% to the grain yield of intercropped wheat, of which, the compensation effect of root overlapping and the complementary of moisture/nutrient exchange attributed 12.9%-13.2% and 12.2%-16.0%, respectively. For maize grain yield in the wheat-maize intercropping, the below-ground interaction attributed 9.7%-22.6%, and with maize density increased, the contribution rate was increased by 7.0%-11.0%. Increase of maize density increased grain yield by 18.1%-23.3% and 12.5%-21.5% under no root barrier and nylon mesh barrier, this indicated that a complete root interaction could improve the positive effect of close planting. The below-ground interaction attributed 5.5%-11.4% to wheat era number, but not influenced by the density. Similarly, the below-ground interaction attributed 12.5%-16.3% to maize era number, and was further increased by 3.6% to 14.1% with the increase of the density. Based on the result of path analysis, it could conclude that the improvement of grain yield of wheat and maize was mainly attributable to the increase of era number per area. This study showed that increase of planting density could significantly promote the intercropping advantage and the contribution rate of the below-ground interaction. Furthermore, a complete effect of above- and below-ground interaction would facilitate the positive effect of close planting. Accordingly, the results will provide sound theoretical base for the further exploring of the mechanism in intercropping advantage under close planting.
Keyword:Intercropping; Planting density; Root interaction; Grain yield; Yield components Show Figures Show Figures
图1 小麦间作玉米田间结构及隔根示意图两种作物带宽均为80 cm, 玉米种2行(行距40 cm), 小麦种6行(行距12 cm), 3种隔根方式为不隔根, 尼龙网隔根和塑料布隔根, 试验开始前, 在间作两种作物中间开沟, 将隔根材料垂直隔至土壤100 cm处。Fig. 1 Layout of intercropped crops and partition of root in wheat/maize intercropping system (cm)Field layout of wheat/maize intercropping with a strip of 80 cm of wheat crops (six rows) alternated with a strip of 80 cm of maize crops (two rows), without physical barrier, with a nylon mesh, and with a solid plastic sheet, between wheat and maize strips. Plastic sheet and nylon mesh were placed vertically to the depth of 100 cm to separate the rooting zones between the two intercrops.
供试小麦品种为宁春2号, 玉米品种为先玉335。2014年度, 小麦3月20日播种、7月26日收获, 玉米4月23日播种、10月4日收获; 2015年度, 小麦3月29日播种、7月27日收获, 玉米4月25日播种、9月28日收获。无论单作还是间作, 小麦均在播前施纯氮225 kg hm-2、P2O5 150 kg hm-2, 玉米全生育期施纯氮450 kg hm-2、P2O5 225 kg hm-2, 按播前: 大喇叭口期: 灌浆期3︰6︰1比例分施。除单作小麦处理全生育期灌水3600 m3 hm-2外, 其他处理全生育期灌水量均为6000 m3 hm-2。 1.3 产量及其构成因素测定成熟后按小区收获、计产, 并在间作小区取4.0 m × 0.8 m的调查点, 单作取4.0 m × 1.2 m的调查点, 统计穗数作为该小区的收获穗数。随机选取小麦20株、玉米10株考种, 数出穗粒数。用PM-8188型谷物水分测定仪测定籽粒含水率, 重复5次, 取其平均值。另外, 统计14%含水量下的千粒重。 1.4 间作土地当量比、贡献率和补偿效应间作土地当量比(LER)表示间作优劣势, LER> 1表示间作优势, LER< 1表示间作劣势。地下作用对产量的贡献率(RCT)、地下部根系重叠对产量产生的补偿效应(CE)、地下部水分交流对产量产生的补偿效应(CEW)和密度对产量的贡献率(RCTD)的计算公式如下: 1.5 统计分析采用 Microsoft Excel整理、汇总数据, 用SPSS19.0进行方差分析、显著性检验。利用SPSS线性回归模型进行通径分析, 运行程序“ Analyze- Regression-Linear” , 获得通径系数(线性回归方程的标准系数, standardized coefficient)和相关系数。任一自变量对因变量的间接通径系数=相关系数× 通径系数。
图2 不同间作处理的土地当量比(LER)W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差, 其上所标不同字母表示处理间差异显著(P< 0.05)。Fig. 2 Land equivalent ration (LER) of different intercropping treatmentsW: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: Nylon mesh barrier; P: Plastic sheet barrier. The error bar indicates standard error. Different letters above error bars indicate significant difference among treatments (P< 0.05).
表2 不同小麦/玉米间作处理的产量构成 Table 2 Yield components in different wheat/maize intercropping treatments
处理 Treatment
小麦 Wheat
玉米 Maize
穗数 Spike number (m-2)
穗粒数 Kernel number per spike
千粒重 TKW (g)
穗数 Ear number (m-2)
穗粒数 Kernel number per ear
千粒重 TKW (g)
2014
W
552.0 a
29.8 c
42.2 d
—
—
—
M1
—
—
—
11.1 b
545.2 bc
326.3 bc
M2
—
—
—
12.6 a
557.6 a
328.2 b
NW//M1
317.3 bcd
35.7 a
43.5 c
5.7 e
518.0 d
327.4 b
NW//M2
306.7 cd
35.2 a
44.6 b
6.5 d
537.2 cd
322.3 bc
W//M1
326.4 bc
34.4 a
45.3 a
6.1 de
522.4 d
344.7 a
W//M2
330.8 b
34.4 a
41.6 e
7.4 c
556.8 ab
320.3 cd
PW//M1
299.3 d
34.3 a
42.8 d
5.6 e
518.5 d
323.7 bc
PW//M2
297.0 d
32.1 b
43.8 c
6.0 e
525.9 d
315.6 d
2015
W
534.3 a
28.9 d
40.2 f
—
—
—
M1
—
—
—
11.4 b
549.1 a
326.8 d
M2
—
—
—
13.7 a
537.4 b
337.3 c
NW//M1
317.7 bc
32.6 b
43.2 c
6.0 fg
505.1 cd
352.9 b
NW//M2
311.7 bcd
32.5 b
42.7 c
6.9 cd
514.1 c
353.9 b
W//M1
314.3 bcd
34.9 a
46.8 a
6.1 ef
548.0 a
366.2 a
W//M2
332.7 b
33.1 b
45.5 b
7.3 c
529.1 b
357.5 b
PW//M1
292.3 d
30.1 c
41.2 d
5.6 g
496.3 d
314.8 e
PW//M2
307.3 cd
30.2 c
40.8 ef
6.5 de
482.8 e
335.6 c
In each year, different letters after values indicate significant difference among treatments at P < 0.05. TKW: thousand-kernel weight. 数据后不同字母表示同一年度中处理间差异显著(P< 0.05)。
表2 不同小麦/玉米间作处理的产量构成 Table 2 Yield components in different wheat/maize intercropping treatments
表3 不同处理小麦、玉米产量构成的通径分析 Table 3 Correlation coefficient and path coefficient of wheat and maize yield with yield component factors in different treatments
作物Corp
自变量Independent variable
与籽粒产量的简单相关系数Correlation coefficient with yield
直接通径系数Direct path coefficient
间接通径系数Indirect path coefficient
X1
X2
X3
小麦 Wheat
X1
0.957* *
1.190
—
-0.168
-0.065
X2
-0.487*
0.241
-0.829
—
0.100
X3
-0.321
0.121
-0.642
0.200
—
玉米 Maize
X1
0.941* *
0.584
—
0.328
0.028
X2
0.830* *
0.436
0.440
—
-0.046
X3
-0.134
-0.156
-0.107
0.128
—
X1: spike number/ear number; X2: kernel number per spike/ear; X3: thousand-kernel weight. * and * * indicate significant correlation at P< 0.05 and P< 0.01, respectively. X1: 穗数; X2: 穗粒数; X3: 千粒重。* 和* * 分别表示在P< 0.05和P< 0.01水平下显著相关。
表3 不同处理小麦、玉米产量构成的通径分析 Table 3 Correlation coefficient and path coefficient of wheat and maize yield with yield component factors in different treatments
柴强, 杨彩红, 黄高宝. 干旱区绿洲不同种植模式作物的耗水特征. , 2010, 30: 1153-1159ChaiQ, Yang CH, Huang GB. Characteristics of crop water consumption of different cropping patterns in an arid oasis. , 2010, 30: 1153-1159 (in Chinese with English abstract)[本文引用:1]
[2]
Stern WR. Nitrogen fixation and transfer in intercrop systems. , 1993, 34: 335-356[本文引用:1]
[3]
Takim FO. Advantages of maize-cowpea intercropping over sole cropping through competition indices. , 2012, 1: 53-59[本文引用:1]
[4]
Zhang FS, LiL. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. , 2002, 248: 305-312[本文引用:1]
黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用. , 1999, 25: 16-24Huang GB. Development of light utilization theory for wheat/ corn intercropping in condition of intensive cultivation. , 1999, 25: 16-24 (in Chinese with English abstract)[本文引用:1]
[7]
陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. , 2012, 38: 80-85Chen GP, Gao JL, ZhaoM, Dong ST, Li SK, Yang QF, Liu YH, Wang LC, Xue JQ, Liu JG, Li CH, Wang YH, Wang YD, Song HX, Zhao JR. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. , 2012, 38: 80-85 (in Chinese with English abstract)[本文引用:2]
[8]
田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. , 2006, 32: 1699-1705Tian JC, Deng ZY, Hu RB, Wang YC. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. , 2006, 32: 1699-1705 (in Chinese with English abstract)[本文引用:1]
[9]
任伟, 赵鑫, 黄收兵, 周楠, 王若男, 陶洪斌, 王璞. 不同密度下增施有机肥对夏玉米物质生产及产量构成的影响. , 2014, 22: 1146-1155RenW, ZhaoX, Huang SB, ZhouN, Wang RN, Tao HB, WangP. Effects of application of organic fertilizer under different planting densities on dry matter production and yield formation of summer maize. , 2014, 22: 1146-1155 (in Chinese with English abstract)[本文引用:1]
[10]
杨艳君, 郭平毅, 曹玉凤, 王宏富, 王玉国, 原向阳. 施肥水平和种植密度对张杂谷5号产量及其构成要素的影响. , 2012, 38: 2278-2285Yang YJ, Guo PY, Cao YF, Wang HF, Wang YG, Yuan XY. Effects of fertilizer and planting density on yield and yield components in foxtail millet hybrid Zhangzagu 5. , 2012, 38: 2278-2285 (in Chinese with English abstract)[本文引用:3]
[11]
宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. , 2012, 38: 2267-2277Song ZW, QiH, Zhang ZP, Qian CR, Guo JR, Deng AX, Zhang WJ. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in northeast China. , 2012, 38: 2267-2277 (in Chinese with English abstract)[本文引用:1]
[12]
马国胜, 薛吉全, 路海东, 张仁和, 邰书静, 任建宏. 播种时期与密度对关中灌区夏玉米群体生理指标的影响. , 2007, 18: 1247-1253Ma GS, Xue JQ, Lu HD, Zhang RH, Tai SJ, Ren JH. Effects of planting date and density on population physiological indices of summer corn in central Shaanxi irrigation area. , 2007, 18: 1247-1253 (in Chinese with English abstract)[本文引用:1]
[13]
孔学夫, 冯福学, 柴强. 根系分隔对小麦玉米套作田土壤水分状况的影响. , 2014, 34: 780-785Kong XF, Feng FX, ChaiQ. The effect of different root partition patterns on soil water condition of wheat-corn intercropping system. , 2014, 34: 780-785 (in Chinese with English abstract)[本文引用:1]
[14]
TemesgenA, FukaiS, RodriguezD. As the level of crop productivity increases: is there a role for intercropping in smallholder agriculture. , 2015, 180: 155-166[本文引用:1]
[15]
刘广才, 杨祁峰, 李隆. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. , 2008, 32: 477-484Liu GC, Yang QF, LiL. Intercropping advantage and contribution of above-and below-ground interactions in wheat-maize intercropping. , 2008, 32: 477-484 (in Chinese with English abstract)[本文引用:1]
[16]
李隆, 杨思存, 孙建好, 李晓林, 张福锁. 小麦/大豆间作中作物种间的竞争作用和促进作用. , 1999, 10: 197-200LiL, Yang SC, Sun JH, Li XL, Zhang FS. Interspecific competition and facilitation in wheat/soybean intercropping system. , 1999, 10: 197-200 (in Chinese with English abstract)[本文引用:2]
[17]
LiL, YangS, LiX. Interspecific complementary and competitive interactions between intercropped maize and faba bean. , 1999, 212: 105-114[本文引用:1]
[18]
Rajaniemi TK, Allison VJ, Goldberg DE. Root competition can cause a decline in diversity with increased productivity. , 2003, 91: 407-416[本文引用:1]
[19]
宋海星, 李生秀. 玉米生长空间对根系吸收特性的影响. , 2003, 36: 899-904Song HX, Li SX. Effects of root growth space of on maize its absorbing characteristics. , 2003, 36: 899-904 (in Chinese with English abstract)[本文引用:1]
[20]
李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. , 2011, 31: 1617-1630Li YY, Hu HS, ChengX, Sun JH, LiL. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in faba bean/maze intercropping system. , 2011, 31: 1617-1630 (in Chinese with English abstract)[本文引用:1]
[21]
张恩和, 黄高宝. 间套种植复合群体根系时空分布特征. , 2003, 14: 1301-1304Zhang EH, Huang GB. Temporal and spatial distribution characteristics of the crop root in intercropping system. , 2003, 14: 1301-1304 (in Chinese with English abstract)[本文引用:1]
[22]
陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. , 2012, 18: 52-59Chen YL, Wu QP, Chen XC, Chen FJ, Zhang YJ, LiQ, Yuan LX, Mi GH. Root growth and its response to increasing planting density in different maize hybrids. , 2012, 18: 52-59 (in Chinese with English abstract)[本文引用:1]
[23]
王树丽, 贺明荣, 代兴龙, 周晓虎. 种植密度对冬小麦根系时空分布和氮素利用效率的影响. , 2012, 23: 1839-1845Wang SL, He MR, Dai XL, Zhou XH. Effects of planting density on root spatiotemporal distribution and plant nitrogen use efficiency of winter wheat. , 2012, 23: 1839-1845 (in Chinese with English abstract)[本文引用:1]
[24]
殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. , 2015, 41: 633-641YinW, ZhaoC, Yu AZ, ChaiQ, Hu FL, Feng FX. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. , 2015, 41: 633-641 (in Chinese with English abstract)[本文引用:2]
[25]
郝艳如, 劳秀荣, 赵秉强, 孙伟红. 隔根对小麦/玉米间套种植生长特性的影响. , 2003, 23(1): 71-74Hao YR, Lao XR, Zhao BQ, Sun WH. Effect of separating root method on wheat and corn intercropping system. , 2003, 23(1): 71-74 (in Chinese with English abstract)[本文引用:1]
[26]
殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. , 2016, 42: 751-757YinW, Feng FX, ZhaoC, Yu AZ, ChaiQ, Hu FL, GuoY. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. , 2016, 42: 751-757 (in Chinese with English abstract)[本文引用:2]
[27]
陈桂平, 于爱忠. 根间作用对玉米间作豌豆耗水特征的影响. , 2014, 23(12): 68-73Chen GP, Yu AZ. Response of water use characteristics of maize/pea intercropping to different root partition and irrigation quota. , 2014, 23(12): 68-73 (in Chinese with English abstract)[本文引用:1]
[28]
杨锦忠, 张洪生, 杜金哲. 玉米产量-密度关系年代演化趋势的Meta分析. , 2013, 39: 515-519Yang JZ, Zhang HS, Du JZ. Meta-analysis of evolution trend from 1950s to 2000s in the relationship between crop yield and plant density in maize. , 2013, 39: 515-519 (in Chinese with English abstract)[本文引用:1]
[29]
胡萌, 魏湜, 杨猛. 密度对不同株型玉米光合特性及产量的影响. , 2010, 18: 103-107HuM, WeiS, YangM. Effects of plant density on photosynthetic characters and yield of different plant types corn. , 2010, 18: 103-107 (in Chinese with English abstract)[本文引用:1]