摘要以淮北地区有代表性的34个中熟中粳品种为试材, 设置7个氮肥水平(0、150.0、187.5、225.0、262.5、300.0、337.5 kg hm-2), 得出各品种的最高产量, 将该最高产量定义为氮肥群体最高生产力。在此基础上, 明确处于顶层水平(≥10.50 t hm-2)、高层水平(9.75~10.50 t hm-2)、中层水平(9.00~9.75 t hm-2)和底层水平(≤9.00 t hm-2)水稻品种的钾素积累、分配及转运特征。结果表明, 4个生产力等级水稻品种地上部植株、茎鞘和叶片的含钾率在拔节期最高; 抽穗期顶层水平品种的这3个参数高于其他3个等级的品种; 穗部含钾率差异不显著。随着氮肥群体生产力等级的提高, 钾素总积累量增多; 拔节前底层水平钾素积累量最多, 两年平均为120.56 kg hm-2, 比例占50.56%, 顶层水平为最少, 两年平均为108.02 kg hm-2, 比例占35.99%; 拔节至抽穗期和抽穗至成熟期顶层水平钾素阶段积累量及比例显著高于其他3个等级。移栽至拔节期, 钾素积累速率为中层>底层>高层>顶层水平, 拔节后则为顶层>高层>中层>底层水平。叶片的钾素转运量及转运率明显高于茎鞘; 顶层水平叶片的钾素转运量高于其他3个等级, 高层水平叶片的转运率最高; 穗部增加量随生产力等级的递增而变大; 抽穗到成熟期, 茎鞘、叶片对穗的钾素转运贡献率表现为底层最高, 中层次之, 顶层最低。4个等级水稻品种籽粒生产率和百千克籽粒吸钾量差异不显著; 钾素偏生产力和钾收获指数均表现为顶层>高层>中层>底层水平。总之, 氮肥群体最高生产力越高, 水稻中后期植株钾素积累量及器官对钾素的吸收利用效率越显著。抽穗后保持较高的钾素吸收利用及转运效率是高产水稻品种的重要特征。
关键词:中熟中粳; 生产力; 钾素积累; 钾素转运 Potassium Absorption and Utilization Characteristics of Rice Varieties with the Highest Population Productivity under Corresponding Nitrogen Fertilization in Huaibei Area LIANG Jian, REN Hong-Ru, XIA Min, LI Xiao-Feng, CHEN Meng-Yun, LI Jun, ZHANG Hong-Cheng, HUO Zhong-Yang* Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China Fund:This study was supported by the National Key Technology Support Program (2013BAD07B09, 2016YFD0200805), the Science and Technology Plan of Jiangsu Province (BE2015340, BE2016351), and Three New Agricultural Engineering Fund of Jiangsu Province (SXGC [2016]321). AbstractA field experiment was carried out using 34 medium-maturing medium japonica rice varieties grown in Huaibei area with seven nitrogen application levels (0, 150.0, 187.5, 225.0, 262.5, 300.0, and 337.5 kg ha-1) to investigate the relationship between potassium and yield. According to the highest population productivity under corresponding N fertilization, rice varieties were classified into four types including top type (TT), high type (HT), middle type (MT), and low type (LT). Yield components, and K absorption and translocation of the four types of rice variety were compared. K concentration of aboveground parts of plant steam-sheath and leaf in different types was the highest at heading stage and that was higher in TT than the other three types. K concentration of panicle was no significant difference among tested varieties. With increasing productivity level, total K accumulation increased. From transplanting to jointing stage, the K accumulation in LT was 120.56 kg ha-1, accounting for 50.56%. The K accumulation of TT was 108.02 kg ha-1, accounting for 35.99%. After jointing, the K accumulation and ratio at each growth stage of TT were higher than those of other three types. The K uptake rate showed a trend of MT > LT > HT > TT from transplanting to jointing stage, and TT > HT > MT > LT from jointing to heading stage and from heading to maturity stage. K translocation and K translocation efficiency of leaf were obviously higher than those of stem-sheath. K translocation of TT and HT’s K translocation efficiency were both the highest. The increasing in K of panicle increased with increasing productivity level. From heading to maturity stage, K translocation conversion rate of vegetative organ was the highest in LT, medium in MT, and the lowest in TT. Internal nutrient efficiency and K requirement for 100 kg grain among four types were no obvious difference and K partial factor productivity and harvest index of K showed a trend of TT > HT > MT > LT. In conclusion, the higher the production level, the higher the potassium use efficiency of plants and organs at the middle and later periods of development. Maintaining high K uptake and translocation efficiency after heading is an important characteristic of high-yield rice varieties.
Keyword:Medium-maturing medium Japonica; Productivity; K accumulation; K translocation Show Figures Show Figures
表2 不同氮肥群体最高生产力水稻品种地上部植株、茎鞘、叶片和穗的含钾率 Table 2 K concentration of aboveground parts for plant, stem-sheath, leaf and panicle in different varieties with the highest population productivity with corresponding N fertilization levels(%)
表2 不同氮肥群体最高生产力水稻品种地上部植株、茎鞘、叶片和穗的含钾率 Table 2 K concentration of aboveground parts for plant, stem-sheath, leaf and panicle in different varieties with the highest population productivity with corresponding N fertilization levels(%)
图1 不同氮肥群体最高生产力水稻品种地上部植株、茎鞘、叶片和穗的钾素积累量 A: 2014年各生育期钾素积累量; B: 2015年各生育期钾素积累量。JO: 拔节; HE: 抽穗; MA: 成熟。Fig. 1 K accumulation of aboveground parts for plant, stem-sheath, leaf and panicle in different varieties with highest population productivity under corresponding N fertilization levels A: K accumulation at each growth stage in 2014; B: K accumulation at each growth stage in 2015. JO: jointing; HE: heading; MA: maturity.
表3 不同氮肥群体最高生产力水稻品种阶段钾素积累量及比例 Table 3 K accumulation and ratio at each growth stage in different varieties with highest population productivity under corresponding N fertilization levels
生产力等级 Productivity level
钾素总积累量 Total K uptake (kg hm-2)
移栽-拔节期Transplanting-Jointing
拔节-抽穗期 Jointing-Heading
抽穗-成熟期 Heading-Maturity
积累量 Uptake (kg hm-2)
比例 Ratio (%)
积累量 Uptake (kg hm-2)
比例 Ratio (%)
积累量 Uptake (kg hm-2)
比例 Ratio (%)
2014
顶层水平TL (≥ 10.50 t hm-2) (N=7)
301.47 a 293.55-309.14
109.22 b 103.64-112.69
36.23 35.21-36.95
181.91 a 176.34-186.26
60.34 58.69-61.31
10.34 a 9.64-11.06
3.43 3.09-3.81
高层水平HL (9.75-10.50 t hm-2) (N=12)
280.63 b 268.57-292.35
112.31 b 109.34-119.64
40.02 38.64-40.92
162.29 b 154.43-172.04
57.83 54.11-58.93
6.03 b 5.19-7.01
2.15 1.98-2.25
中层水平ML (9.00-9.75 t hm-2) (N=11)
265.46 c 256.34-273.67
121.00 a 110.72-126.62
45.58 43.66-46.98
139.66 c 128.36-146.71
52.61 50.63-54.31
4.80 c 4.69-5.12
1.81 1.67-1.90
底层水平LL (≤ 9.00 t hm-2) (N=4)
241.31 d 231.91-248.39
120.10 a 115.91-125.48
49.77 48.35-50.64
116.70 d 108.69-121.55
48.36 47.42-49.36
4.51 d 4.01-5.28
1.87 1.84-1.95
平均数 Mean
272.22
115.66
42.90
150.14
54.79
6.42
2.32
变异系数 CV (%)
9.31
5.01
13.93
18.78
9.78
41.94
32.74
2015
顶层水平TL (≥ 10.50 t hm-2) (N=7)
298.85 a 292.64-305.68
106.81 c 103.62-110.36
35.74 34.68-36.48
182.33 a 177.14-184.96
61.01 60.77-61.85
9.71 a 9.46-9.98
3.25 3.06-3.50
高层水平HL (9.75-10.50 t hm-2) (N=12)
274.73 b 261.69-282.16
113.27 b 106.93-117.42
41.23 40.29-42.38
155.83 b 148.43-160.34
56.72 54.31-59.14
5.63 b 5.19-6.33
2.05 1.83-2.16
中层水平ML (9.00-9.75 t hm-2) (N=11)
260.18 c 251.63-267.69
121.45 a 118.83-124.36
46.68 45.16-47.83
134.64 c 127.39-140.81
51.75 49.65-54.68
4.08 c 3.46-4.66
1.57 1.40-1.72
底层水平LL (≤ 9.00 t hm-2) (N=4)
235.74 d 226.69-241.42
121.03 a 118.62-125.37
51.34 50.84-51.93
111.91 d 108.88-114.67
47.47 46.33-49.62
2.81 d 2.71-2.89
1.19 1.05-1.24
平均数 Mean
267.38
115.64
43.75
146.18
54.24
5.56
2.02
变异系数 CV (%)
9.89
6.04
15.43
20.55
10.86
53.98
44.44
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by different letters are significantly different at the 0.05 probability level. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同小写字母的数值在0.05水平差异显著。
表3 不同氮肥群体最高生产力水稻品种阶段钾素积累量及比例 Table 3 K accumulation and ratio at each growth stage in different varieties with highest population productivity under corresponding N fertilization levels
图2 不同氮肥群体最高生产力水稻品种钾素积累速率 A: 2014年各生育阶段钾素积累速率; B: 2015年各生育阶段钾素积累速率。TR-JO: 移栽至拔节; JO-HE: 拔节至抽穗; HE-MA: 抽穗至成熟。Fig. 2 K uptake rate in different varieties with the highest population productivity under corresponding N fertilization levels A: K uptake rate at each growth stage in 2014; B: K uptake rate at each growth stage in 2015. TR-JO: Transplanting-Jointing; JO-HE: Jointing-Heading; HE-MA: Heading-Maturity.
表4 不同氮肥群体最高生产力水稻品种抽穗至成熟期钾素转运 Table 4 K translocation from heading to maturity in different varieties with highest population productivity under corresponding N fertilization
生产力等级 Productivity level
茎鞘Stem-sheath
叶片Leaf
穗部钾增加量 Increase in K of panicle (kg hm-2)
钾素转运贡献率 K translocation conversion rate of vegetative organ (%)
K转运量 K translocation (kg hm-2)
K转运率 K translocation efficiency (%)
K转运量 K translocation (kg hm-2)
K转运率 K translocation efficiency (%)
2014
顶层水平TL (≥ 10.50 t hm-2) (N=7)
23.42 ab 22.19-24.03
11.83 b 10.73-12.49
38.89 a 37.69-40.26
49.81 a 48.44-50.66
72.65 a 70.94-74.34
85.77 b 84.61-86.37
高层水平HL (9.75-10.50 t hm-2) (N=12)
24.78 a 23.83-25.34
13.21 a 12.64-14.57
36.37 b 34.69-38.48
49.92 a 48.06-51.64
67.19 b 64.97-69.36
91.02 a 87.31-93.61
中层水平ML (9.00-9.75 t hm-2) (N=11)
21.98 b 20.49-23.44
12.51 b 11.84-13.64
33.54 c 32.68-34.35
48.16 a 47.24-49.37
60.33 c 58.39-62.42
92.04 a 91.34-94.61
底层水平LL (≤ 9.00 t hm-2) (N=4)
17.24 c 17.01-17.54
10.93 c 10.49-11.34
27.51 d 26.84-28.49
43.51 b 41.34-45.94
49.26 d 48.01-51.31
92.84 a 91.63-95.64
平均数 Mean
21.86
12.12
34.08
47.85
62.36
89.92
变异系数 CV (%)
15.02
8.04
14.36
6.27
16.16
3.13
2015
顶层水平TL (≥ 10.50 t hm-2) (N=7)
27.92 ab 27.04-29.27
13.89 c 13.47-14.94
35.80 a 35.13-36.94
47.96 a 46.64-48.81
73.43 a 70.94-76.39
86.77 b 84.31-88.42
高层水平HL (9.75-10.50 t hm-2) (N=12)
26.33 b 25.49-27.64
14.18 c 12.93-15.67
34.06 b 33.49-34.73
48.81 a 47.34-50.64
66.03 b 65.31-67.61
91.47 a 89.47-94.28
中层水平ML (9.00-9.75 t hm-2) (N=11)
28.62 a 27.64-29.64
15.97 a 15.06-17.35
27.92 c 27.24-28.94
44.11 b 43.10-46.91
60.63 c 58.39-61.48
93.26 a 90.47-95.14
底层水平LL (≤ 9.00 t hm-2) (N=4)
23.97 c 23.09-25.94
14.87 b 13.59-16.34
22.41 d 22.04-23.42
38.95 c 35.96-40.34
49.18 d 48.63-51.01
94.29 a 92.49-95.68
平均数 Mean
26.71
14.73
30.05
44.96
62.32
0.91
变异系数 CV (%)
7.73
6.26
20.34
10.01
16.38
3.64
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by different letters are significantly different at the 0.05 probability level. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同小写字母的数值在0.05水平差异显著。
表4 不同氮肥群体最高生产力水稻品种抽穗至成熟期钾素转运 Table 4 K translocation from heading to maturity in different varieties with highest population productivity under corresponding N fertilization
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by different letters are significantly different at the 0.05 probability level. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同小写字母的数值在0.05水平差异显著。
表5 不同氮肥群体最高生产力水稻品种钾素利用效率 Table 5 K use efficiency in different varieties with highest population productivity under corresponding N fertilization
表6 钾素积累转运与产量的相关系数 Table 6 Correlation coefficients between rice yield and accumulation of K
特征指标 Characteristic index
生育阶段Growth period
生育期Growth stage
移栽至拔节Transplanting- Jointing
拔节至抽穗Jointing- Heading
抽穗至成熟Heading- Maturity
拔节期 Jointing stage
抽穗期 Heading stage
成熟期 Mature stage
钾素积累量 K accumulation
地上部植株Aboveground parts
-0.897* *
0.982* *
0.864* *
-0.897* *
0.981* *
0.977* *
茎鞘 Stem-sheath
-0.882* *
0.992* *
0.977* *
叶片 Leaf
-0.916* *
0.895* *
0.787*
穗 Panicle
-0.443
0.984* *
钾素积累速率 K uptake rate
地上部植株Aboveground parts
-0.897* *
0.967* *
0.851* *
钾素转运量 K translocation
茎鞘 Stem-sheath
0.587
叶片 Leaf
0.877* *
* , * * denote significantly different at the 0.05 and 0.01 probability levels, respectively. * , * * 分别表示达到0.05和0.01显著水平。
表6 钾素积累转运与产量的相关系数 Table 6 Correlation coefficients between rice yield and accumulation of K
3 讨论3.1 水稻品种产量与钾素吸收利用特征的关系近年来, 随着作物产量的不断提高和有机肥施用量的下降, 淮北地区缺钾和肥力不均等问题日趋突出[18, 19]。钾对水稻的正常生长和产量有重要影响[20, 21], 水稻高产需要在各生育期及生育阶段吸收利用与产量相适应的钾素。杨雄[14]对长江中下游50个早熟晚粳品种的研究发现, 水稻地上部分植株的钾素积累量在拔节期随着生产力等级的提高逐渐下降, 抽穗至拔节期随着生产力等级的提高呈增加趋势。杜永等[22]研究表明, 在有效分蘖临界叶龄期之前, 不同产量水平水稻品种植株吸钾量差异不明显, 拔节后, 钾素吸收量越多其产量也越高。本试验研究条件下, 拔节期顶层水平吸钾量低于中层、底层水平, 抽穗期钾素积累量则表现为顶层水平> 高层水平> 中层水平> 底层水平。两年中, 顶层水平抽穗期钾素积累量为291.13 kg hm-2 (286.48~296.37 kg hm-2)和289.14 kg hm-2(283.05~298.64 kg hm-2), 高层水平为274.60 kg hm-2(267.81~281.61 kg hm-2)和269.10 kg hm-2(264.62~273.05 kg hm-2), 中层水平为260.66 kg hm-2(254.68~367.30 kg hm-2)和256.10 kg hm-2(251.83~ 258.09 kg hm-2), 底层水平为236.80 kg hm-2(230.72~ 243.92 kg hm-2)和232.93 kg hm-2(225.38~334.87 kg hm-2), 与前人研究结果基本一致。 凌启鸿等[11]对籼优3号不同产量群体关键生育阶段的吸钾量研究表明, 拔节至抽穗阶段的吸钾量与产量呈正相关, 提高此阶段群体的吸钾量是高产水稻栽培的重点。纪洪亭等[23]对2个杂交稻品种进行拟合分析得出, 钾素积累均呈现“ 慢— 快— 慢” 的变化。韦还和等[24]对超级稻甬优12移栽至拔节阶段和拔节至抽穗阶段的钾素积累量与产量关系进行拟合方程分析得出, 播种至拔节阶段甬优12钾素积累量与产量呈极显著线性负相关, 拔节至抽穗阶段呈极显著正相关。本试验研究表明, 4个生产力等级水稻品种移栽至拔节阶段钾素积累量与产量极显著负相关, 相关系数r = -0.897, 拔节至抽穗阶段呈极显著正相关, r = 0.982。此外, 拔节至抽穗阶段钾素积累速率显著高于移栽至拔节阶段和抽穗至成熟阶段, 这与纪洪亭等分析认为的钾素快速增长期出现在拔节前12~16 d至孕穗前1~5 d基本吻合[23]。说明水稻大面积栽培中, 重点提高拔节后植株的钾素积累, 适当减少拔节前钾素积累, 有利于提高产量。 3.2 不同产量水平水稻品种钾素分配及转运特征陈智慧等[25]研究表明, 水稻地上部植株钾素含钾量随生育期的推进逐渐降低, 且在相应生育阶段分配相对应的钾素于各营养器官以满足其代谢活动。葛梦婕[26]的研究显示, 地上部植株含钾率越高水稻品种产量越高。本试验中, 顶层水平抽穗期和成熟期的地上部植株含钾率高于高层、中层和底层3个水平平均值5.89%和4.17%。前期顶层水平茎鞘和叶片的含钾率并没有中层、底层水平高, 说明前期顶层水平对土壤钾素的吸收不及其他3个等级; 但在拔节后含钾率增大, 显著高于其他3个等级, 说明顶层水平水稻品种器官对钾素的吸收作用在中后期优势明显。 杨雄[14]研究发现, 水稻茎鞘抽穗期的钾素积累量与产量呈极显著正相关, 叶片拔节至抽穗阶段的钾素积累量与产量呈极显著正相关。本研究表明, 顶层水平水稻品种茎鞘抽穗期的钾素积累量显著高于其他3个等级, 顶层水平叶片在拔节至抽穗阶段的钾素积累量达38.41 kg hm-2(两年平均值), 高层水平为32.18 kg hm-2, 中层水平为24.24 kg hm-2, 底层水平为18.18 kg hm-2。水稻品种前期吸收的钾素主要分配到茎鞘、叶片等器官。抽穗后, 水稻茎鞘和叶片的钾素向籽粒转运[27]。钾素在植物体内非常活跃, 在水稻中积累中心为茎鞘, 各生产力等级品种在拔节期、抽穗期和成熟期茎鞘钾素积累量占整个植株的比例分别为64.70%~65.32%、66.65%~ 70.03%和56.90%~59.21%。叶片通过根系吸收来自土壤中的钾素, 一部分随外部环境淋失, 其在叶片中的积累动态呈单峰曲线, 在齐穗期达高峰。前人研究发现, 抽穗后钾素转运到茎鞘和穗部[28]。我们用钾素的转运量和转运率来表示茎鞘和叶片向籽粒的运输转移。转运量大说明各器官能更多地向穗部转运钾素, 而转运率大说明各器官更有效率地向穗部转运钾素。本研究表明, 两年中茎鞘钾素转运量底层水平显著低于中层、高层、顶层水平, 但中层、高层、顶层水平规律不明显; 叶片钾素转运量则随着生产力等级的提高而增大。这说明叶片对籽粒钾素的转移与产量呈正相关(r = 0.877), 而茎鞘对籽粒钾素的转移与产量无相关性(r = 0.587)。但转运量和转运率大并不代表最终的钾素贡献率就大[29]。尽管顶层水平和高层水平叶片和茎鞘转运量更大, 但是由于外部环境的影响, 一部分钾素在下雨等外部条件下淋失, 最终顶层水平和高层水平的钾素转运贡献率没有中层水平和底层水平高。因此在栽培管理中, 要力争在增加转运量的基础上提高转运贡献率, 从而更有效地增加钾素向籽粒的转移。
4 结论氮肥群体最高生产力水稻品种钾素积累主要集中在移栽至拔节和拔节至抽穗(占总吸收量的96.57%~98.81%), 钾素阶段积累速率以拔节至抽穗阶段较高; 随着生产力等级的提高, 抽穗后地上部植株及茎鞘和叶片的含钾率、钾素积累量、钾素阶段积累量、钾素积累速率呈递增趋势, 钾素转运贡献率呈递减趋势, 但籽粒生产率及百千克籽粒吸钾量规律不明显。处于生产力顶层水平的水稻品种生育前期吸钾率与钾素积累量较低, 生育中后期钾素积累量与积累速率高, 钾素积累总量多, 叶片钾素转运量、转运率、穗部钾增加量、钾收获指数及钾素偏生产力均高。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
金继运. 土壤钾素研究进展. , 1993, 30: 94-101Jin JY. Advances in soil potassium research. , 1993, 30: 94-101 (in Chinese)[本文引用:1]
[2]
陈化榜, 李振声, 李继云. 植物矿质营养育种的研究进展. , 1995, 24: 1-6Chen HB, Li ZS, Li JY. Progress and perspectives of plant breeding for efficient utilization of mineral nutrition soil. , 1995, 24: 1-6 (in Chinese with English abstract)[本文引用:1]
[3]
WittC, DobermannA, AbdulrachmanS, Gines HC, WangG, NagarajanR, SatawatananontS, Son TT, Tan PS, Tiem LV, Simbahan GC, Olk DC. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. , 1999, 63: 113-138[本文引用:1]
[4]
LiuM, YuZ, LiuY, Konijn NT. Fertilizer requirements for wheat and maize in China: the QUEFTS approach. , 2006, 74: 245-258[本文引用:1]
[5]
胡泓, 王光火. 钾肥对杂交水稻养分积累以及生理效率的影响. , 2003, 9: 184-189HuH, Wang GH. Influence of potassium fertilizer on nutrient accumulation and physiological efficiency of hybrid rice. , 2003, 9: 184-189 (in Chinese with English abstract)[本文引用:1]
[6]
HeP, Yang LP, Xu XP, Zhao SC, ChenF, Li ST, Tu SH, Jin JY, Johnston AM. Temporal and spatial variation of soil available potassium in China (1990-2012). , 2015, 173: 49-56[本文引用:1]
[7]
任意, 张淑香, 穆兰, 田有国, 卢昌艾. 我国不同地区土壤养分的差异及变化趋势. , 2009, (6): 13-17RenY, Zhang SX, MuL, Tian YG, Lu CA. Change and difference of soil nutrients for various regions in China. , 2009, (6): 13-17 (in Chinese with English abstract)[本文引用:1]
[8]
赵明松, 李德成, 张文凯, 胡春华, 邵云鹏. 淮北平原农田土壤养分空间变异特征——以安徽省蒙城县为例. , 2016, 47: 611-617Zhao MS, Li DC, Zhang WK, Hu CH, Shao YP. Spatial variability characteristics of soil nutrient in North Plain of Anhui province: a case study of Mengcheng county, Anhui province. , 2016, 47: 611-617 (in Chinese with English abstract)[本文引用:1]
[9]
褚国良, 詹国勤, 丁剑英, 吴行国, 戴增捷. 丘陵地区水稻氮磷钾经济用量与配比研究. , 1996, (3): 5-7Chu GL, Zhan GQ, Ding JY, Wu XG, Dai ZJ. The research of economic dosage and the ratio of NPK on rice in Hilly region. , 1996, (3): 5-7 (in Chinese)[本文引用:1]
[10]
王强盛. 水稻钾素营养的积累特征及生理效应. , 2009Wang QS. Accumulation Characteristics and Physiological Effect of Rice Potassium Nutrition. , 2009 (in Chinese with English abstract)[本文引用:1]
张洋洋, 鲁剑巍, 王友珠, 王振, 李小坤, 任涛, 丛日环. 钾肥施用方式对直播和移栽水稻产量和钾肥利用效率的影响. , 2016, (1): 110-114Zhang YY, Lu JW, Wang YZ, WangZ, Li XK, RenT, Cong RH. Effects of potassium fertilizer application method on yield and potassium apparent efficiency of direct-sowing rice and transplanting rice. , 2016, (1): 110-114 (in Chinese with English abstract)[本文引用:1]
[13]
刘国栋, 刘更另. 籼稻耐低钾基因型的筛选. , 2002, 28: 161-166Liu GD, Liu GL. Screening indica rice for K-efficient genotypes. , 2002, 28: 161-166 (in Chinese with English abstract)[本文引用:1]
[14]
杨雄. 不同氮肥群体最高生产力水稻品种氮磷钾的积累、分配与转运的差异性分析. , 2012Yang X. TheAccumulation, Distribution and Translocation of NPK of Rice Varieties with Different Productivity Levels. , 2012 (in Chinese with English abstract)[本文引用:3]
[15]
杨波, 任万军, 杨文钰, 卢庭启, 肖启银. 不同种植方式下钾肥用量对水稻钾素吸收利用及产量的影响. , 2008, 23(5): 60-64YangB, Ren WJ, Yang WY, Lu TQ, Xiao QY. Effects of applying amounts of potassium fertilizer on potassium uptake and utilization and grain yield in rice under different planting modes. , 2008, 23(5): 60-64 (in Chinese with English abstract)[本文引用:1]
[16]
张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. , 2012, 38: 86-98Zhang HC, MaQ, YangX, LiM, Ge MJ, Li GY, Dai QG, Huo ZY, XuK, Wei HY, GaoH, Liu YY. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. , 2012, 38: 86-98 (in Chinese with English abstract)[本文引用:1]
[17]
霍中洋, 顾海永, 马群, 杨雄, 李敏, 李国业, 戴其根, 许轲, 魏海燕, 高辉, 芦燕, 张洪程. 不同氮肥群体最高生产力水稻品种的氮素吸收利用差异. , 2012, 38: 2061-2068Huo ZY, Gu HY, MaQ, YangX, LiM, Li GY, Dai QG, XuK, Wei HY, GaoH, LuY, Zhang HC. Differences of nitrogen absorption and utilization in rice varieties with different productivity levels. , 2012, 38: 2061-2068 (in Chinese with English abstract)[本文引用:1]
[18]
陈川, 丁国霞, 钟平, 邵文奇, 安凯先, 石彦兵. 淮北稻田套播麦的主要生育特点与施肥技术. , 2008, (1): 26-28ChenC, Ding GX, ZhongP, Shao WQ, An KX, Shi YB. Main reproductive characteristics and application techniques at interplanting wheat in paddy in Huaibei area. , 2008, (1): 26-28 (in Chinese)[本文引用:1]
[19]
刘枫, 王允清, 刘英, 钱国平. 安徽省土壤钾素供应状况与钾肥效应分析. , 2016, 34: 205-208LiuF, Wang YQ, LiuY, Qian GP. Analysis of soil potassium status and potash fertilizer effect in Anhui province. , 2016, 34: 205-208 (in Chinese with English abstract)[本文引用:1]
[20]
Fageria NK, Baligar VC, Wright RJ. Lowland rice response to potassium fertilization and its effect on N and P uptake. , 1990, 21: 157-162[本文引用:1]
[21]
王强盛, 甄若宏, 丁艳锋, 吉志军, 曹卫星, 黄丕生. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响. , 2004, 37: 1444-1450Wang QS, Zhen RH, Ding YF, Ji ZJ, Cao WX, Huang PS. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. , 2004, 37: 1444-1450 (in Chinese with English abstract)[本文引用:1]
[22]
杜永, 刘辉, 杨成, 王志琴, 杨建昌. 超高产栽培迟熟中粳稻养分吸收特点的研究. , 2007, 33: 208-215DuY, LiuH, YangC, Wang ZQ, Yang JC. Characteristics of nutrient absorption in super-high-yielding mid-season and late- maturity japonica rice. , 2007, 33: 208-215 (in Chinese with English abstract)[本文引用:1]
[23]
纪洪亭, 冯跃华, 何腾兵, 潘剑, 范乐乐, 李云, 武彪, 肖铭, 梁显林. 超级杂交稻群体干物质和养分积累动态模型与特征分析. , 2012, 45: 3709-3720Ji HT, Feng YH, He TB, PanJ, Fan LL, LiY, WuB, XiaoM, Liang XL. A dynamic model of dry matter and nutrient accumulation in super hybrid rice and analysis of its characteristics. , 2012, 45: 3709-3720 (in Chinese with English abstract)[本文引用:2]
[24]
韦还和, 孟天瑶, 李超, 张洪程, 戴其根, 马荣荣, 王晓燕, 杨筠文. 超级稻甬优12不同产量水平群体的钾素营养特性. , 2016, 42: 1047-1057Wei HH, Meng TY, LiC, Zhang HC, Dai QG, Ma RR, Wang XY, Yang JW. Potassium nutrition characteristics in different yield populations of super rice Yongyou 12. , 2016, 42: 1047-1057 (in Chinese with English abstract)[本文引用:1]
[25]
陈智慧, 王火焰, 周健民, 安林林, 陈小琴, 杜昌文. 不同钾素水平对水稻不同部位含钾量的影响. , 2013, 45: 489-494Chen ZH, Wang HY, Zhou JM, An LL, Chen XQ, Du CW. Dynamic changes of rice K content influenced by different soil K levels. , 2013, 45: 489-494 (in Chinese with English abstract)[本文引用:1]
[26]
葛梦婕. 长江中下游地区常规超级粳稻产量形成及养分吸收利用特性. , 2014Ge M J. Yield Formation, Absorption and Utilization of NPK of Conventional Japonica Super in Yangtze River Area. , 2014 (in Chinese with English abstract)[本文引用:1]
[27]
杨柳青. 不同氮水平下钾对水稻生长的影响. , 2012Yang LQ. Effects of Potassium on the Growth of Rice under Different Nitrogen Levels. , 2012 (in Chinese with English abstract)[本文引用:1]
[28]
姜照伟, 李小萍, 赵雅静, 李义珍. 杂交水稻氮钾素吸收积累特性及氮素营养诊断. , 2011, 26: 852-857Jiang ZW, LI XP, Zhao YJ, Li YZ. N/P absorption and accumulation and N nutrition of hybrid rice. , 2011, 26: 852-859 (in Chinese with English abstract)[本文引用:1]
[29]
孙永健, 孙园园, 李旭毅, 张荣萍, 郭翔, 马均. 水氮互作对水稻氮磷钾吸收、转运及分配的影响. , 2010, 36: 655-664Sun YJ, Sun YY, Li XY, Zhang RP, GuoX, MaJ. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. , 2010, 36: 655-664 (in Chinese with English abstract)[本文引用:1]