关键词:夏玉米; 根系; 根系构型; 灌浆; 产量 Effect of Cutting Roots Vertically at a Place with Different Horizontal Distance from Plant on Yield and Grain Storage Capacity of Summer Maize XU Zhen-He1,**, LIANG Ming-Lei1,2,**, LU Du-Xu1, LIU Mei1, LIU Peng1,*, DONG Shu-Ting1, ZHANG Ji-Wang1, ZHAO Bin1, LI Geng1, YANG Jin-Sheng3 1 State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China;
2 Liaocheng Agriculture Committee, Liaocheng 252000, China
3Shandong Denghai Seeds Co. Ltd. / Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology, Laizhou 261448, China
Fund:This study was supported by the National Natural Science Foundation of China (31371576, 31401339), National Key Research and Development Program of China (2016YFD0300106), National Key Technology Support Program of China (2013BAD07B06-2), the Special Fund for Agro-scientific Research in the Public Interest (201103100, 201203096), Shandong Modern Agricultural Technology & Industry System (SDAIT-02-08), the China Agriculture Research System (CARS-02-20), Agriculture Technology Innovation Project of Shandong Province, and Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology. AbstractA field experiment was conducted using two summer maize cultivars, Zhengdan 958 (ZD, shallow root type) and Denghai 661 (DH, deep root type). At the V12 stage, we cut roots vertically at different horizontal distance of 10 cm, 20 cm and 30 cm from maize plant in 60 cm soil depth, with no roots cutting as contrast check, which were referred to as ZDCK, ZD10, ZD20, ZD30 and DHCK, DH10, DH20, DH30 respectively. Roots of ZD10 and ZD20 decreased 24.81%, 11.69% and those of DH10, DH20 decreased 16.82%, 7.52% after cutting roots, respectively. Grain yield of summer maize decreased significantly after cutting roots, with a decrease of 13.09%, 9.10% for ZD10 and ZD20, respectively, and 9.81%, 4.64% for DH10 and DH20. After cutting roots, grains per ear and 1000-grain weight of ZD20, ZD10, DH20, and DH10 declined 4.90%, 5.60%, 4.37%, 7.88%, and 3.38%, 5.15%, 1.15%, 4.97%, respectively, which is the important factors resulting in lower grain yield. Grain sink and setting rate were also decreased to a different extent after cutting roots. Cutting roots decreased days to the maximum grain filling rate ( Tmax), weight at the time up to the maximum grain filling rate ( Wmax), maximum grain filling rate ( Gmax), the phase of active grain filling, and average grain filling rate of two cultivars, with more decrease in Zhengdan 958 than in Denghai 661.
Keyword:Summer maize; Root; Root system architecture; Grain filling; Yield Show Figures Show Figures
表1 不同断根处理对夏玉米产量及其构成因素的影响 Table 1 Effects of cutting root on grain yield and yield component in summer maize
年份Year
品种 Cultivar
处理Treatment
单位面积穗数 Ear number hm-2
穗粒数 Grains per ear
千粒重 1000-grain weight (g)
产量 Yield (kg hm-2)
产量降幅 Yield reduction rate (%)
2014
郑单958 Zhengdan 958
ZDCK
68610 b
603.68 a
335.12 a
13880.10 a
—
ZD30
69180 a
593.66 ab
331.49 a
13614.10 b
1.92
ZD20
68570 b
574.08 b
320.46 b
12614.80 c
9.10
ZD10
68350 b
569.85 b
308.72 c
12024.41 d
13.09
登海661 Denghai 661
DHCK
68355 a
568.09 a
364.83 a
14167.00 a
—
DH30
67845 a
565.52 a
361.15 b
13856.50 b
2.19
DH20
68250 a
548.87 ab
360.63 b
13509.33 c
4.64
DH10
68398 a
538.84 b
346.69 c
12777.46 d
9.81
品种 Cultivar (C)
NS
* * *
* * *
* * *
处理 Treatment (T)
NS
* * *
* * *
* * *
品种× 处理 C× T
NS
* * *
* * *
* * *
2015
郑单958 Zhengdan 958
ZDCK
69010 a
598.21 a
332.02 a
13706.61 a
—
ZD30
68980 a
592.72 ab
330.18 a
13499.68 b
1.51
ZD20
68900 a
578.01 b
316.16 b
12591.04 c
8.14
ZD10
68850 a
562.85 b
301.22 c
11672.94 d
14.84
登海661 Denghai 661
DHCK
68196 ab
572.01 a
378.83 a
14777.70 a
—
DH30
67945 b
569.52 a
375.15 b
14516.82 b
1.77
DH20
68350 a
558.78 ab
368.16 b
14060.99 c
4.85
DH10
68155 ab
548.84 b
352.69 c
13192.79 d
10.73
品种 Cultivar (C)
NS
* * *
* * *
* * *
处理 Treatment (T)
NS
* * *
* * *
* * *
品种× 处理 C× T
NS
* * *
* * *
* * *
Value followed by different letters within the same column, same year and same cultivar are significantly different at the 0.05 level. * * * Significant at the 0.001 probability level; NS: Not significant at the 0.05 probability level. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm of Denghai 661, respectively. 不同字母表示同栏同年同一品种比较在P=0.05水平上差异显著。* * * 代表0.001显著水平; NS: 代表不显著。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。
表1 不同断根处理对夏玉米产量及其构成因素的影响 Table 1 Effects of cutting root on grain yield and yield component in summer maize
表2 不同断根处理对夏玉米植株干物质积累的影响 Table 2 Effects of cutting root on dry matter accumulation of summer maize
年份 Year
品种 Cultivar
处理 Treatment
干物质积累量Dry matter accumulation (kg hm-2)
大口期 V12
开花期 VT
成熟期 R6
花后干物质积累比例Ratio of post-anthesis (%)
2014
郑单958 Zhengdan 958
ZDCK
8619.60 a
13373.25 a
31140.45 a
57.05 a
ZD30
8353.20 a
13186.80 a
30296.55 b
56.47 a
ZD20
8177.40 a
12539.25 b
26764.65 c
53.15 a
ZD10
8459.55 a
12322.20 b
24575.10 d
49.86 b
登海661 Denghai 661
DHCK
8105.70 a
12196.05 a
29463.30 a
58.61 a
DH30
8261.55 a
12090.45 a
29151.45 a
58.53 a
DH20
8182.35 a
11572.35 b
26565.00 b
56.44 ab
DH10
8019.90 a
11416.35 c
24802.05 c
53.97 b
2015
郑单958 Zhengdan 958
ZDCK
8058.60 a
13802.25 a
31500.15 a
56.18 a
ZD30
8096.55 a
13748.70 a
31316.25 a
56.10 a
ZD20
8170.80 a
12973.20 b
28097.85 b
53.83 ab
ZD10
8155.20 a
11655.60 c
23644.50 c
50.71 b
登海661 Denghai 661
DHCK
8432.40 a
12542.55 a
30022.65 a
58.22 a
DH30
8580.90 a
12428.70 a
29599.35 a
58.01 a
DH20
8485.20 a
11757.90 b
28477.35 b
56.84 ab
DH10
8411.70 a
11257.95 c
24565.20 c
54.17 b
Value followed by different letters within the same column, same year and same cultivar are significantly different at the 0.05 level. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm of Denghai 661, respectively. 不同字母表示同栏同年同一品种比较在P=0.05水平上差异显著。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。
表2 不同断根处理对夏玉米植株干物质积累的影响 Table 2 Effects of cutting root on dry matter accumulation of summer maize
表3 不同断根处理对夏玉米潜在粒数与结实率的影响 Table 3 Effects of cutting root on total potential grain numbers and grain setting rate of summer maize
年份 Year
品种 Cultivar
处理 Treatment
潜在穗粒数 Potential number of grains per ear
实际穗粒数 Number of grains per ear
结实率 Grain setting rate (%)
2014
郑单958 Zhengdan 958
ZDCK
780.25 a
603.68 a
77.37
ZD30
771.15 a
593.66 ab
76.98
ZD20
776.35 a
574.08 b
73.95
ZD10
783.24 a
569.85 b
72.76
登海661 Denghai 661
DHCK
721.08 a
568.09 a
78.78
ZD30
730.51 a
565.52 a
77.41
ZD20
724.55 a
548.87 ab
75.75
ZD10
718.18 a
538.84 b
75.03
2015
郑单958 Zhengdan 958
ZDCK
760.12 a
598.21 a
78.70
ZD30
766.25 a
592.72 ab
77.35
ZD20
762.01 a
578.01 b
75.85
ZD10
754.58 a
562.85 b
74.59
登海661 Denghai 661
DHCK
749.12 a
572.01 a
76.36
DH30
751.45 a
569.52 a
75.79
DH20
745.32 a
558.78 ab
74.97
DH10
743.91 a
548.84 b
73.78
Value followed by different letters within the same column, same year and same cultivar are significantly different at the 0.05 level. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm of Denghai 661, respectively. 不同字母表示同栏同年同一品种比较在P=0.05水平上差异显著。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。
表3 不同断根处理对夏玉米潜在粒数与结实率的影响 Table 3 Effects of cutting root on total potential grain numbers and grain setting rate of summer maize
图2 不同断根处理对夏玉米籽粒体积的影响ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958 植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10 分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。Fig. 2 Effects of cutting root on grain volume of summer maizeZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively.
图3 不同断根处理对夏玉米籽粒干重的影响ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958 植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10 分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。Fig. 3 Effects of cutting root on grain dry weight of summer maizeZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively.
图4 不同断根处理对夏玉米籽粒灌浆速率的影响(2014年)ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958 植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10 分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。Fig. 4 Effects of cutting root on grain filling rate of summer maize in 2014ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively.
表4 Table 4 表4(Table 4)
表4 断根对夏玉米籽粒灌浆参数的影响(2014年度) Table 4 Effects of cutting root on grain filling parameters of summer maize in 2014
品种 Cultivar
处理 Treatment
生长曲线方程 Growth curve parametric equation
相关系数 Correlation coefficient
R0
Tmax (d)
Wmax (g 100 grains-1)
Gmax (g 100 grains-1d-1)
P (d)
郑单958 Zhengdan 958
ZDCK
y = 33.82/(1+41.37e-0.15x)
0.998
0.147
25.32
16.91
1.24
40.82
ZD30
y = 33.48/(1+40.53e-0.14x)
0.998
0.144
25.71
16.74
1.21
41.67
ZD20
y = 31.36/(1+44.99e-0.15x)
0.997
0.152
25.04
15.68
1.19
39.47
ZD10
y = 26.74/(1+42.06e-0.16x)
0.996
0.161
23.22
13.37
1.08
37.27
登海661 Denghai 661
DHCK
y = 35.18/(1+48.19e-0.14x)
0.998
0.140
27.68
17.59
1.23
42.86
DH30
y = 34.71/(1+49.45e-0.14x)
0.995
0.143
27.28
17.36
1.24
41.96
DH20
y = 33.88/(1+49.48e-0.14x)
0.999
0.144
27.09
16.94
1.22
41.67
DH10
y = 29.72/(1+50.14e-0.15x)
0.998
0.151
25.93
14.86
1.12
39.74
Tmax: days to the maximum grain filling; Wmax: weight at the time up to the maximum grain filling rate; Gmax: maximum grain filling rate; P: active grain filling period; R0: the initial growth of grain filling. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively. Tmax: 到达最大灌浆速率时的天数; Wmax: 灌浆速率最大时的生长量; Gmax: 最大灌浆速率; P: 籽粒灌浆活跃期; R0: 灌浆起始势。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958 植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表登海661对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。
表4 断根对夏玉米籽粒灌浆参数的影响(2014年度) Table 4 Effects of cutting root on grain filling parameters of summer maize in 2014
图5 不同断根处理对夏玉米籽粒淀粉积累量的影响数据为两年的平均值。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。Fig. 5 Effects of cutting root on starch accumulation of summer maize grainData are mean of those in 2014 and 2015. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively.
图6 不同断根处理对夏玉米籽粒淀粉积累速率的影响数据为两年的平均值。ZDCK、ZD30、ZD20、ZD10分别代表郑单958对照处理、距离郑单958植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。DHCK、DH30、DH20、DH10分别代表对照处理、距离登海661植株两侧30 cm垂直断根、20 cm垂直断根和10 cm垂直断根。Fig. 6 Effects of cutting root on starch accumulation rate of summer maize grainData are mean of those in 2014 and 2015. ZDCK, ZD30, ZD20, ZD10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Zhengdan 958, respectively. DHCK, DH30, DH20, DH10 represent contrast check, cutting root vertically at 30 cm, 20 cm, and 10 cm for Denghai 661, respectively.
王玉贞, 李维岳, 尹枝瑞. 玉米根系与产量关系的研究进展. , 1999, 24(4): 6-8Wang YZ, Li WY, Yin ZR. The research progress of corn root system and production relations. , 1999, 24(4): 6-8 (in Chinese with English abstract)[本文引用:1]
Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. , 2013, 112(2): 347-357[本文引用:2]
[4]
Zhu JM, Kaeppler SM, Lynch JP. Topsoil foraging and phosphorus acquisition efficiency in maize (, 2005, 32: 749-762[本文引用:1]
[5]
米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. , 2010, 40: 1112-1116Mi GH, Chen FJ, Wu QP, Lai NW, Yuan LX, Zhang FS. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. , 2010, 40: 1112-1116 (in Chinese with English abstract)[本文引用:3]
[6]
宋日, 吴春胜, 王成己, 郭继勋. 玉米深层根系对地上部营养生长和产量的影响. , 2002, 10(3): 63-66SongR, Wu CS, Wang CJ, Gu JX. Effects of deep root system on above-ground vegetative growth and yield in maize. , 2002, 10(3): 63-66 (in Chinese with English abstract)[本文引用:1]
[7]
Hammer GL, Dong ZS, McleanG, DohertyA, MessinaC, SchusslerJ, ZinselmeierC, PaszkiewiczS, CooperM. Can changes in canopy and /or root system architecture explain historical maize yield trends in the U. S. corn belt?, 2009, 49: 299-312[本文引用:1]
[8]
齐文增, 刘慧慧, 李耕, 邵立杰, 王飞飞, 刘鹏, 董树亭, 张吉旺, 赵斌. 超高产夏玉米根系时空分布特性. , 2012, 18: 69-76Qi WZ, Liu HH, LiG, Shao LJ, Wang FF, LiuP, Dong ST, Zhang JW, ZhaoB. Temporal and spatial distribution characteristics of super-high-yield summer maize root. , 2012, 18: 69-76 (in Chinese with English abstract)[本文引用:3]
[9]
蔡红光, 刘剑钊, 张秀芝, 闫孝贡, 张洪喜, 袁静超, 盖嘉慧, 任军. 不同根构型玉米的根系形态及其对密度的响应. , 2014, 22(5): 81-85Cai HG, Liu JZ, Zhang XZ, Yan XG, Zhang HX, Yuan JC, Gai JH, RenJ. Root morphology and its response to planting density in different genotypes with root architecture. , 2014, 22(5): 81-85 (in Chinese with English abstract)[本文引用:2]
[10]
王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. , 2013, 46: 4007-4017Wang FF, Zhang SP, Shao LJ, LiG, Chen XL, LiuP, Zhao BQ, Dong ST, Zhang JW, ZhaoB. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. , 2013, 46: 4007-4017 (in Chinese with English abstract)[本文引用:3]
[11]
王敬锋, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特性与氮素吸收利用的差异. , 2011, 44: 699-707Wang JF, LiuP, Zhao BQ, Dong ST, Zhang JW, ZhaoM, Yang JS, LiG. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. , 2011, 44: 699-707 (in Chinese with English abstract)[本文引用:2]
[12]
姜平, 张承福. 淀粉含量的测定——旋光法. , 1992, (1): 59-61JiangP, Zhang CF. Determination of starch content—polarimeter. , 1992, (1): 59-61 (in Chinese with English abstract)[本文引用:3]
[13]
李晓龙, 高聚林, 胡树平, 于晓芳, 王志刚, 苏治军, 谢岷. 不同深耕方式对土壤三相比及玉米根系构型的影响. , 2015, 33(4): 1-7Li XL, Gao JL, Hu SP, Yu XF, Wang ZG, Su ZJ, XieM. Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize. , 2015, 33(4): 1-7 (in Chinese with English abstract)[本文引用:2]
[14]
于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军. 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. , 2013, 21(1): 114-119Yu XF, Gao JL, YeJ, Wang ZG, Sun JY, Hu SP, Su ZJ. Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. , 2013, 21(1): 114-119 (in Chinese with English abstract)[本文引用:2]
[15]
王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. , 2008, 19: 787-793WangQ, Li CH, Hao SP, Zhang YE, Han JF. Effects of subsoil bulk density on late growth stage photo synthetic characteristics and grain yield of maize. , 2008, 19: 787-793 (in Chinese with English abstract)[本文引用:2]
[16]
张玉芹, 张恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. , 2011, 37: 735-743Zhang YQ, Zhang HS, Gao JL, Zhang RF, Wang ZG, Xu SJ, Fan XY, Bi WB. Root characteristics of super high-yield spring maize. , 2011, 37: 735-743 (in Chinese with English abstract)[本文引用:2]
[17]
Jackson RB, Sperry JS, Dawson TE. Root water uptake and transport: Using physiological processes in global predictions. , 2000, 5: 482-488[本文引用:1]
[18]
刘子会, 柳斌辉, 李运朝, 郭秀林. 起身期断根对冬小麦后期光合和生长的影响. , 2007, 22(5): 189-190Liu ZH, Liu BH, Li YZ, Guo XL. Effect of roots-cutting in double ridge stage on the photosynthetic rate and later growth of winter wheat. , 2007, 22(5): 189-190 (in Chinese with English abstract)[本文引用:1]
[19]
王化岑, 刘万代, 王晨阳. 超高产小麦根系生长规律与垂直分布状态研究. , 2002, 18(2): 6-8Wang HC, Liu WD, Wang CY. Study on the root growth regularity and the vertical distribution state of super high-yield wheat. , 2002, 18(2): 6-8 (in Chinese with English abstract)[本文引用:1]
[20]
李飒, 彭云峰, 于鹏, 张瑜, 方正, 李春俭. 不同年代玉米品种干物质积累与钾素吸收及其分配. , 2011, 17: 325-332LiS, Peng YF, YuP, ZhangY, FangZ, Li CJ. Accumulation and distribution of dry matter and potassium in maize varieties released in different years. , 2011, 17: 325-332 (in Chinese with English abstract)[本文引用:1]
[21]
戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. , 2011, 44: 1585-1595Dai MH, Zhao JR, Yang GH, Wang RH, Chen GP. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. , 2011, 44: 1585-1595 (in Chinese with English abstract)[本文引用:1]
[22]
Karlen DL, Sadler EJ, Camp CR. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk loamy sand . , 1987, 79: 649-656[本文引用:1]
[23]
梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. , 1993, 14(4): 25-30Liang JS, Cao XZ. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. , 1993, 14(4): 25-30 (in Chinese with English abstract)[本文引用:1]
[24]
Qi WZ, Liu HH, LiuP, Dong ST, Zhao BQ, So HB, LiG, Liu HD, Zhang JW, ZhaoB. Morphological and physiological characteristics of corn (, 2012, 38: 54-63[本文引用:1]
[25]
宋海星, 王学立. 玉米根系活力及吸收面积的空间分布变化. , 2005, 14: 137-141Song HX, Wang XL. The space distribution of the maize root activity and its absorbing area. , 2005, 14: 137-141 (in Chinese with English abstract)[本文引用:1]
[26]
慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. , 2005, 25(11): 103-108Mu ZX, Zhang SQ, Hao WF, Liang AH, Liang ZS. The effect of root morphological traits and spatial distribution on WUE in maize. , 2005, 25(11): 103-108 (in Chinese with English abstract)[本文引用:1]
[27]
周小平, 张岁岐, 杨晓青, 刘小芳, 刘立生. 玉米根系活力杂种优势及其与光合特性的关系. , 2008, 17(4): 84-90Zhou XP, Zhang SQ, Yang XQ, Liu XF, Liu LS. Heterosis of maize root activity and its relationship with photosynthetic characteristics. , 2008, 17(4): 84-90 (in Chinese with English abstract)[本文引用:1]
[28]
刘殿英, 石立岩, 董庆裕. 不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响. , 1993, 19: 149-155Liu DY, Shi LY, Dong QY. The effect of top-dressing and irrigation time on the root system, root activities and plant character in winter wheat. , 1993, 19: 149-155 (in Chinese with English abstract)[本文引用:1]
[29]
Otegui ME, BonhommeR. Grain yield components in maize: I. Ear growth and grain set. , 1998, 56: 247-256[本文引用:1]
[30]
Paponov IA, SamboP, Erley G S A, Presterl T, Geiger H H, Engels C. Grain yield and grain weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. , 2005, 272: 111-123[本文引用:1]
[31]
BorrásL, Westgate ME, Otegui ME. Control of grain weight and grain water relations by post-flowering source-sink ratio in maize. , 2003, 91: 857-867[本文引用:1]
[32]
Costa CL, Dwyer LM, Zhou XM, DutilleulP, HamelC, Reid LM, Smith DL. Root morphology of contrasting maize genotypes. , 2002, 94: 96-101[本文引用:1]
[33]
刘惠惠. 超高产夏玉米根系生理特性及其对籽粒发育的调控. 山东农业大学硕士学位论文, , 2012Liu HH. Study on Effect of Root Physiological Characters on Grain Development of Super High-yield Summer Maize. MS Thesis of Shand ong Agricultural University, Tai’an, , 2012 (in Chinese with English abstract)[本文引用:1]
[34]
常二华, 王朋, 唐成, 刘立军, 王志琴, 杨建昌. 水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系. , 2006, 32: 540-547Chang EH, WangP, TangC, Liu LJ, Wang ZQ, Yang JC. Concentrations of cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice. , 2006, 32: 540-547 (in Chinese with English abstract)[本文引用:1]