关键词:大豆; 粒形; QTL; 上位性互作 Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean CHEN Qiang*, YAN Long*, DENG Ying-Ying, XIAO Er-Ning, LIU Bing-Qiang, YANG Chun-Yan*, ZHANG Meng-Chen* Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Shijiazhuang Branch of National Soybean Improvement Center / Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Shijiazhuang 050035, China Fund:This study was supported by the National Natural Science Foundation of China (31471522), the Natural Science Foundation of Heibei Province (C2015301012), the National High-tech Research and Development Program of China (2012AA101106), the China Agriculture Research System (CARS-004-PS06), and the National Major Project for Developing New GM Crops (2014ZX0800402B) AbstractSeed size and shape not only relate to seed yield and quality, but also affect mechanical seeding in soybean ( Glycine maxL.). In this study, F6:8 and F6:9populations derived from Jidou 12 × Heidou were used to analyze the genetic character and detect quantitative trait loci (QTLs) for seed length, seed width, seed thickness, seed length-to-width ratio, seed length-to-thickness ratio, and seed width-to-thickness ratio. Softwares WinQTLCart 2.5, QTLNetwork 2.1 and IciMapping 4.1 were used to identify the additive, epistatic and environmentally interacted QTLs for seed size and shape related traits. As results, the heritability of the six traits varied from 64.01% to 79.57%. A total of 38 additive QTLs were identified to be located on 12 chromosomes, with the heritability varying from 2.21% to 10.71%. Eight of them ( qSL-17-1, qSL-18-1, qSW-6-1, qST-2-1, qST-6-1, qSLT-2-2, qSWT-2-1, and qSWT-20-1) were identified using three methods, simultaneously. In the meantime, seven pairs of additive × additive epistasis were detected and the heritability of epistasis pairs ranged from 0.78% to 6.20%. Additionally, the effects of QTL by environment interaction ranged from 0.0005% to 0.3900%. The QTLs identified using different mapping softwares in this study could provide a reliable theoretical basis for marker-assisted selection breeding.
表1 亲本及群体籽粒大小与粒形性状在2011和2013年中的表现 Table 1 Characteristics of seed size and shape traits in RILs derived from the cross between Jidou 12 and Heidou in 2011 and 2013
性状 Trait
年份 Year
亲本 Parent
重组自交系群体 RIL
双因素方差分析P值 P-value of double factor variance analysis
冀豆12 Jidou12
黑豆 Heidou
平均值 Mean
最大值 Max.
最小值 Min.
标准差 SD
变异系数 CV(%)
基因型 Genotype (G)
环境 Environment (E)
基因型× 环境 G × E
粒长SL (mm)
2011
8.68± 0.15
7.33± 0.19
7.92
9.63
6.56
0.55
6.98
0.000* *
0.000* *
0.000* *
2013
7.60± 0.12
7.05± 0.22
7.49
8.62
6.17
0.47
6.27
粒宽SW (mm)
2011
7.08± 0.18
4.83± 0.09
5.80
7.10
4.57
0.39
6.67
0.000* *
0.000* *
0.000* *
2013
6.70± 0.16
4.77± 0.09
5.75
6.70
4.65
0.35
6.08
粒厚ST (mm)
2011
5.52± 0.10
3.19± 0.12
4.35
5.58
3.17
0.36
8.17
0.000* *
0.467
0.974
2013
5.56± 0.11
3.27± 0.17
4.38
5.58
3.26
0.37
8.44
长宽比SLW
2011
1.23± 0.01
1.52± 0.02
1.37
1.69
1.13
0.08
6.09
0.000* *
0.000* *
0.189
2013
1.13± 0.01
1.48± 0.01
1.30
1.54
1.13
0.07
5.38
长厚比SLT
2011
1.57± 0.02
2.30± 0.02
1.83
2.34
1.44
0.16
8.71
0.000* *
0.000* *
0.040*
2013
1.37± 0.02
2.16± 0.02
1.71
2.15
1.36
0.14
8.18
宽厚比SWT
2011
1.28± 0.01
1.52± 0.02
1.34
1.65
1.11
0.08
6.26
0.000* *
0.000* *
0.000* *
2013
1.21± 0.01
1.46± 0.03
1.32
1.61
1.07
0.07
5.30
* Significant at the 0.05 probability level. * * Significant at the 0.01 probability level. SL: seed length; SW: seed width; ST: seed thickness; SLW: seed length-to-width ratio; SLT: seed length-to-thickness ratio; SWT: seed width-to-thickness ratio. * 表示0.05的显著水平; * * 表示0.01的显著水平。
表1 亲本及群体籽粒大小与粒形性状在2011和2013年中的表现 Table 1 Characteristics of seed size and shape traits in RILs derived from the cross between Jidou 12 and Heidou in 2011 and 2013
图1 群体粒形相关性状频率分布图 A: 群体粒长表型分布; B: 群体粒宽表型分布; C: 群体粒厚表型分布; D: 群体长宽比表型分布; E: 群体长厚比表型分布; F: 群体宽厚比表型分布Fig. 1 Frequency distribution of seed size traits of soybean populations in 2011 and 2013 A: frequency distribution of seed length; B: frequency distribution of seed width; C: frequency distribution of seed thickness; D: frequency distribution of seed length-to-width ratio; E: frequency distribution of seed length-to-thickness ratio; F: frequency distribution of seed width-to-thickness ratio.
表2 两年中粒形性状间的简单相关和偏相关分析 Table 2 Simple and partial correlation coefficients for seed traits in soybean in two years
年份 Year
性状 Trait
粒长 SL
粒宽 SW
粒厚 ST
长宽比 SLW
长厚比 SLT
宽厚比 SWT
2011
粒长SL
0.876* *
-0.388* *
0.697* *
-0.176*
0.030
粒宽SW
0.574* *
0.782* *
-0.441* *
-0.080
0.393* *
粒厚ST
0.357* *
0.746* *
-0.062
0.388* *
-0.722* *
长宽比SLW
0.443* *
-0.468* *
-0.415* *
0.827* *
-0.650* *
长厚比SLT
0.397* *
-0.296* *
-0.698* *
0.747* *
0.917* *
宽厚比SWT
0.209* *
0.219* *
-0.629* *
0.086
0.706* *
2013
粒长SL
0.863* *
-0.415* *
0.623* *
0.138
-0.292* *
粒宽SW
0.577* *
0.815* *
-0.366* *
-0.341* *
0.631* *
粒厚ST
0.384* *
0.707* *
-0.063
0.468* *
-0.814* *
长宽比SLW
0.471* *
-0.380* *
-0.303* *
0.687* *
-0.488* *
长厚比SLT
0.344* *
-0.284* *
-0.685* *
0.715* *
0.893* *
宽厚比SWT
-0.001
-0.043
-0.687* *
0.067
0.710* *
In the panel of 2011 or 2013, the data at lower left corner are coefficients of correlation between traits, and those at upper right corner are coefficients of partial correlation between traits. * Significant at the 0.05 probability level. * * Significant at the 0.01 probability level. SL: seed length; SW: seed width; ST: seed thickness; SLW: seed length-to-width ratio; SLT: seed length-to-thickness ratio; SWT: seed width-to-thickness ratio. 表中左下角为各性状间单相关系数, 右上角为各性状间偏相关系数; * 表示0.05的显著水平; * * 表示0.01的显著水平。
表2 两年中粒形性状间的简单相关和偏相关分析 Table 2 Simple and partial correlation coefficients for seed traits in soybean in two years
4 结论共检测到籽粒大小和粒形相关性状中加性效应QTL 38个, 以3种方法同时检测到的位点8个, 分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1和qSWT-20-1, 可靠性较高, 其中qST-2-1、qSLT-2-2和qSWT-2-1为首次报道。环境互作效应贡献率均较低, 而上位性互作位点7对, 效应相对较高, 其中对粒形性状影响显著, 不能忽略。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
Liang HZ, Li WD, WangH, Fang XJ. Genetic effects on seed traits in soybean. , 2005, 32: 1199-1204[本文引用:1]
[2]
Wilson D OJr. , 1995. pp 173-208[本文引用:1]
[3]
Nelson RL, WangP. Variation and evaluation of seed shape in soybean. Crop Sci, 1989, 29: 147-150[本文引用:1]
[4]
Cober ER, Voldeng HD, Fregeau-Reid J A. Heritability of seed shape and seed size in soybean. Crop Sci, 1997, 37: 1767-1769[本文引用:1]
[5]
Fan CC, Xing YZ, Mao HL, Lu TT, HanB, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171[本文引用:2]
[6]
Song XJ, HuangW, ShiM, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630[本文引用:2]
[7]
Wan XY, Weng JF, Zhai HQ, Wang JK, Lei CL, Liu XL, GuoT, JiangL, SuN, Wan JM. QTL analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179: 2239-2252[本文引用:2]
[8]
Zhang XJ, Wang JF, HuangJ, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, QianQ, Li JY, Zhang HS. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534-21539[本文引用:1]
[9]
Sun LJ, Li XJ, Fu YC, Zhu ZF, Tan LB, Liu FX, Sun XY, Sun XW, Sun CQ. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. , 2013, 55: 938-949[本文引用:1]
[10]
MoongkannaJ, NakasathienS, Novitzky WP, KwanyuenP, SinchaisriP, SrinivesP. SSR markers linking to seed traits and total oil content in soybean. , 2011, 44: 233-241[本文引用:2]
[11]
SalasP, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr. ). Theor Appl Genet, 2006, 113: 1459-1466[本文引用:3]
[12]
刘晓芬. 大豆栽培品种群体粒形性状及百粒重的关联分析. 南京农业大学博士学位论文, , 2012Liu XF. Association Analysis for Seed Shape Traits and 100-seed Weight in Soybean (Glycine max L. Merr. ). PhD Dissertation of Nanjing Agricultural University, Nanjing, , 2012 (in Chinese with English abstract)[本文引用:1]
[13]
XuY, Li HN, Li GJ, WangX, Cheng LG, Zhang YM. , 2011, 122: 581-594[本文引用:1]
[14]
牛远, 徐宇, 李广军, 王云清, 刘晓芬, 李河南, 魏世平, 章元明. 大豆籽粒大小和粒形的驯化研究. 大豆科学, 2012, 31: 522-528NiuY, XuY, Li GJ, Wang YQ, Liu XF, Li HN, Wei SP, Zhang YM. Domestication of seed size and shape traits in soybean. Soybean Sci, 2012, 31: 522-528 (in Chinese with English abstract)[本文引用:2]
[15]
牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青春, 刘兵, 章元明. 大豆粒形性状QTL的精细定位. 作物学报, 2013, 39: 609-616NiuY, Xie FT, Bu SH, Xie SQ, Han SF, Geng QC, LiuB, Zhang YM. Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agron Sin, 2013, 39: 609-616 (in Chinese with English abstract)[本文引用:2]
[16]
Xie FT, NiuY, ZhangJ, Bu SH, Zhang HZ, Geng QC, Feng JY, Zhang YM. Fine mapping of quantitative trait loci for seed size traits in soybean. Mol Breed, 2014, 34: 2165-2178[本文引用:3]
[17]
Hu ZB, Zhang HR, Kan GZ, Ma DY, ZhangD, Shi GX, Hong DL, Zhang GZ, Yu DY. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr. ). Genetica, 2013, 141: 247-254[本文引用:1]
[18]
Yu SB, Li JX, Xu CG. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. , 1997, 94: 922-931[本文引用:4]
[19]
孙亚男, 仕相林, 蒋洪蔚, 孙殿军, 辛大伟, 刘春燕, 胡国华, 陈庆山. 大豆百粒重QTL的上位效应和基因型×环境互作效应分析. , 2013, 34: 598-603Sun YN, Shi XL, Jiang HW, Sun DJ, Xin DW, Liu CY, Hu GH, Chen QS. Epistatic effects and QE interaction effects of QTLs for 100-seed weight in soybean. , 2013, 34: 598-603 (in Chinese with English abstract)[本文引用:1]
[20]
Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang QF. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257[本文引用:1]
[21]
NiuY, XuY, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785-794[本文引用:4]
[22]
梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 杜华, 崔暐文, 刘学义, 方宣钧. 大豆粒形性状主效QTL环境互作和上位性检测. 中国农业科学, 2013, 46: 5081-5088Liang HZ, Yu YL, Yang HQ, Zhang HY, DongW, DuH, Cui WW, Liu XY, Fang XJ. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean. Sci Agric Sin, 2013, 46: 5081-5088 (in Chinese with English abstract)[本文引用:2]
[23]
闫宁, 谢尚潜, 耿青春, 徐宇, 李广军, 刘兵, 汪霞, 李其刚, 章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础. 作物学报, 2013, 39: 258-268YanN, Xie SQ, Geng QC, XuY, Li GJ, LiuB, WangX, Li QG, Zhang YM. Genetic basics of seed traits in soybean with bayes hierarchical gengralized linear model method. Acta Agron Sin, 2013, 39: 258-268 (in Chinese with English abstract)[本文引用:1]
[24]
苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100-1107Su CF, Zhao TJ, Gai JY. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100-1107 (in Chinese with English abstract)[本文引用:2]
[25]
李杰勤, 张启军, 叶少平, 赵兵, 梁永书, 彭勇, 吴发强, 王世全, 李平. 四种不同QTL作图方法的比较研究. 作物学报, 2005, 31: 1473-1477Li JQ, Zhang QJ, Ye SP, ZhaoB, Liang YS, PengY, Wu FQ, Wang SQ, LiP. Comparative research on four mapping methods of QTLs. Acta Agron Sin, 2005, 31: 1473-1477 (in Chinese with English abstract)[本文引用:2]
[26]
Wang SC, Basten CJ, Zeng ZB. , USA, 2001-2006[本文引用:1]
[27]
YangJ, ZhuJ, Williams RW. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527-1536[本文引用:1]
[28]
Li HH, Ye GY, Wang JK. A modified algorithm for the improvement of composite interval mapping. , 2007, 175: 361-374[本文引用:1]
[29]
MengL, Li HH, Zhang LY, Wang JK. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283[本文引用:1]
[30]
Nyquist WE, Baker RJ. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991, 10: 235-322[本文引用:1]
[31]
Lu WG, Wen ZX, Li HC, Yuan DH, Li JY, ZhangH. Identification of the quantitative trait loci (QTL) underlying water soluble prote incontent in soybean. Theor Appl Genet, 2013, 126: 425-433[本文引用:1]
[32]
陈强. 大豆籽粒相关性状QTL定位分析. 河北科技师范学院硕士学位论文, , 2014ChenQ. QTL Mapping for seed related traits in soybean (Glycine max L. Merr. ). MS Dissertation of Hebei Normal University of Science & Technology, Qinhuangdao, , 2014 (in Chinese with English abstract)[本文引用:1]
[33]
雷雅坤, 闫龙, 杨春燕, 宋晓坤, 张孟臣, 黄占景. 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012, 27(6): 5-10Lei YK, YanL, Yang CY, Song XK, Zhang MC, Huang ZJ. Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012, 27(6): 5-10 (in Chinese with English abstract)[本文引用:1]
[34]
Wang SC, Basten CJ, Zeng ZB. Windows QTL Cartographer V2. 5. Department of Statistics. , 2007[本文引用:1]
[35]
YangJ, ZhuJ. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274[本文引用:1]
[36]
YangJ, Hu CC, HuH, Yu RD, XiaZ, Ye XZ, ZhuJ. QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721-723[本文引用:1]
[37]
张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015, 41: 187-196Zhang HM, Li HC, Wen ZX, Gu HP, Yuan XX, Chen HT, Cui XY, ChenX, Lu WG. Identification of QTL associated with vitamin e content in soybean seeds. Acta Agron Sin, 2015, 41: 187-196 (in Chinese with English abstract)[本文引用:1]
[38]
McCouchS, ChenX, PanaudO, TemnykhS, XuY, Cho YG, HuangN, IshiiT, BlairM. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99[本文引用:1]
[39]
Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, DelannayX, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128[本文引用:1]
[40]
Mansur LM, OrfJ, ChaseK, JarvikT, Cregan PB, Lark KG. Genetic mapping of agronomictraits using recombi-nant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336[本文引用:1]
[41]
杜景红, 樊叶杨, 吴季荣, 庄杰云. 水稻第6染色体短臂产量性状QTL簇的分解. 中国农业科学, 2008, 41: 939-945Du JH, Fan YY, Wu JR, Zhuang JY. Dissection of QTLs for yield traits on the short arm of rice chromosome 6. Sci Agric Sin2008, 41: 939-945 (in Chinese with English abstract)[本文引用:1]