摘要为探明不同养分管理模式在实地农户种植条件下对直播水稻产量和氮肥利用率的影响。本试验于2011年6月至2013年11月在江苏省兴化市茅山镇基本农田保护区的田间稻麦轮作条件下, 分别选取茅山东村、茅山西村和冯顾村各8个农户, 开展3个不同养分管理模式试验, 设置了不施肥对照(CK)、农民习惯施肥(FFP)和优化施肥(OPT1和OPT2) 4个处理, 主要研究了水稻产量及构成因子、氮累积分配和氮肥利用率等对不同养分管理模式的响应。结果表明: (1)施肥较不施肥显著提高水稻产量, 优化施肥(226 kg N hm-2)在较习惯施肥(333 kg N hm-2)平均减氮32.1%的基础上显著提高水稻产量5.5%, 增产原因是提高了穗粒数、结实率和千粒重; OPT2较OPT1平均增产3.1%, 其原因是在孕穗期增施了钾肥(18 kg hm-2 K2O)。(2)优化施肥水稻植株各部位氮浓度、百千克籽粒需氮量和秸秆氮累积均显著低于习惯施肥, 且降低营养器官的氮素分配比例。(3)优化施肥较习惯施肥显著提高水稻氮肥利用率, 其氮肥偏生产力(PFPN)、氮肥农学效率(AEN)、氮肥回收效率(REN)和氮肥生理效率(PEN)分别平均增加55.5%、79.1%、18.7%和48.7%。(4)水稻植株氮累积与产量呈显著正相关, 且优化施肥单位氮累积的增产效果高于习惯施肥。因此, 基于氮肥总量控制、分期调控和增施钾肥的养分优化管理措施可在实地农户直播稻种植上协同实现水稻高产和氮肥高效。
关键词:水稻; 产量; 养分管理; 氮肥利用率; 实地农户种植 Effects of Nutrient Management on Yield and Nitrogen Use Efficiency of Direct Seeding Rice GUO Jiu-Xin1, KONG Ya-Li1, XIE Kai-Liu1, LI Dong-Hai2, FENG Xu-Meng1,3, LING Ning1, WANG Min1, GUO Shi-Wei1,* 1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
2 Agricultural Technology Extension and service station of Fuyu County, Songyuan 138000, China
3 College of Country Development, Nanjing Agricultural University, Nanjing 210095, China
Fund:This study was supported by the National Basic Research Program of China (973 Program, 2013CB127403) and the China Special Fund for Agro-scientific Research in the Public Interest (201103003 and 201203013) AbstractThe effects of different nutrient management models on the yield and nitrogen (N) use efficiency (NUE) of direct seeding rice were investigated under site-specific farmers cultivate practice situation. We conducted a field experiment at eight farmers’ field in basic farmland protection region with a rice-wheat rotation ecosystem in Xinghua County, Maoshan Town, Jiangsu Province, from June 2011 to November 2013. Three different nutrient management models and a control were used in this experiment including fertilizer free treatment (CK), farmers’ fertilizer practice (FFP) and optimal fertilizer management 1 and 2 (OPT1 and OPT2). The rice yield and its components, N accumulation and distribution, and NUE were determined. The results showed that the rice grain yield of OPT treatments (226 kg ha-1 N) significantly increased 5.5% due to the increase of grains per panicle, seed setting percentage, and 1000-grain weight while the N fertilizer application reduced 32.1% as compared with FFP treatment (333 kg ha-1 N). The rice grain yield of OPT2 treatment was 3.1% higher than that of OPT1 treatment while resulted from increasing potassium application (18 kg ha-1 K2O) at booting stage. The N concentration of different parts of plant, N requirement for 100 kg grain, straw N accumulation and N distribution in vegetative organs of OPT treatment were significantly lower than these of FFP treatment. Compared with FFP treatment, OPT treatment also significantly improved NUE of rice plants, in which partial factor productivity of N (PFPN), agronomic efficiency of N (AEN), the recovery efficiency of N (REN) and physiological efficiency of N (PEN) increased by 55.5%, 79.1%, 18.8%, and 48.7%, respectively. There was a significantly positive correlation between plant N accumulation and grain yield in rice, and the effect of yield increase per unit N accumulation in OPT treatment was higher than that in FFP treatment. Therefore, the optimal nutrition management model, including controlling total N rate, regulating application stage of N fertilizer and increasing potassium application, can be need to obtain a comprehensive effect for high grain yield and high N fertilizer use efficiency in direct seeding rice planted by farmers.
Keyword:Rice; Yield; Nutrient management; Nitrogen use efficiency; Site-specific farmer cultivate Show Figures Show Figures
表2 不同养分管理对水稻产量及构成因素的影响 Table 2 Effects of different nutrient managements on yield and its components of rice
年份 Year
处理 Treatment
穗数 Panicles (× 104 hm-2)
穗粒数 Grains per panicle
结实率 Seed-setting percentage (%)
千粒重 1000-grain weight (g)
籽粒产量 Grain yield (kg hm-2)
增产率 Yield increase rate (%)
2011
CK
343.7 b
70.9 b
89.8 a
27.3 a
6070 c
—
FFP
442.7 a
95.7 a
75.6 c
23.9 c
8143 b
—
OPT1
418.7 a
96.6 a
82.3 b
25.0 b
8529 ab
4.7
OPT2
428.2 a
98.4 a
82.9 b
24.7 bc
8831 a
8.4
2012
CK
331.9 b
76.9 b
90.1 a
26.7 a
6023 b
—
FFP
437.5 a
94.5 a
76.1 c
23.7 b
7632 a
—
OPT1
411.3 a
97.0 a
82.3 b
24.4 b
7908 a
3.6
OPT2
416.8 a
98.0 a
82.9 b
24.1 b
8056 a
5.5
2013
CK
309.9 c
70.0 b
89.0 a
27.0 a
5152 c
—
FFP
442.3 a
91.1 a
75.1 c
23.7 b
7469 b
—
OPT1
398.5 b
95.2 a
82.6 b
24.4 b
7727 ab
3.5
OPT2
408.5 ab
95.0 a
82.1 b
24.1 b
8021 a
7.3
方差分析P值 Significance (P-value)
年份Year
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
处理Treatment
0.0170
0.0087
< 0.0001
0.0026
< 0.0001
年份× 处理Year× Treatment
< 0.0001
0.0030
< 0.0001
< 0.0001
< 0.0001
CK: fertilizer free control; FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2. Values within the same year followed by different letters are significantly different between treatments at the 5% probability level. CK: 不施肥对照; FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2。同一年份下不同处理间标以不同小写字母的值在5%水平上差异显著。
表2 不同养分管理对水稻产量及构成因素的影响 Table 2 Effects of different nutrient managements on yield and its components of rice
图2 不同养分管理对水稻产量的影响 CK: 不施肥对照; FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2。不同处理间标以不同小写字母的柱值在5%水平上差异显著。Fig. 2 Effects of different nutrient managements on rice yield CK: fertilizer free control; FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2. Bars superscripted by different small letters are significantly different between treatments at the 5% probability level.
表3 不同养分管理对水稻氮浓度、累积和分配的影响 Table 3 Effects of different nutrient managements on N concentration, accumulation, and distribution of rice
年份 Year
处理 Treatment
氮浓度 N concentration (mg g-1)
氮累积 N accumulation (kg hm-2)
氮分配 N distribution (%)
秸秆 Straw
籽粒 Grain
秸秆 Straw
籽粒 Grain
总体 Total
秸秆 Straw
籽粒 Grain
2011
CK
4.2 c
11.9 c
26.1 c
72.5 b
98.6 c
26.6 c
73.4 a
FFP
10.9 a
14.7 a
82.7 a
120.1 a
202.8 a
40.1 a
59.2 c
OPT1
7.9 b
13.4 ab
61.1 b
114.0 a
175.1 b
34.9 b
65.1 b
OPT2
8.0 b
14.1 b
63.2 b
124.4 a
187.6 ab
33.7 b
66.3 b
2012
CK
4.8 c
11.7 c
29.1 c
70.3 b
99.4 c
29.0 c
71.0 a
FFP
11.1 a
15.0 a
80.0 a
114.3 a
194.3 a
41.1 a
58.9 c
OPT1
8.5 b
13.3 b
59.8 b
105.7 a
165.5 b
36.2 b
63.8 b
OPT2
8.5 b
14.0 b
60.8 b
113.1 a
173.9 b
35.0 b
65.0 b
2013
CK
6.4 b
12.0 c
33.1 b
61.9 b
94.9 b
33.6 a
66.4 a
FFP
10.2 a
14.7 a
69.9 a
109.4 a
179.3 a
38.9 a
61.2 a
OPT1
8.8 a
13.6 ab
60.2 a
105.4 a
165.5 a
36.3 a
63.7 a
OPT2
9.1 a
13.8 b
64.4 a
110.5 a
174.9 a
36.5 a
63.5 a
方差分析P值Significance (P-value)
年份Year
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
处理Treatment
< 0.0001
0.0008
< 0.0001
< 0.0001
< 0.0001
0.0348
0.0348
年份× 处理Year× Treatment
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
CK: fertilizer free control; FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2. Values within the same year followed by different letters are significantly different between treatments at the 5% probability level. CK: 不施肥对照; FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2。同一年份下不同处理间标以不同小写字母的值在5%水平上差异显著。
表3 不同养分管理对水稻氮浓度、累积和分配的影响 Table 3 Effects of different nutrient managements on N concentration, accumulation, and distribution of rice
图3 不同养分管理对水稻籽粒氮浓度的影响 CK: 不施肥对照; FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2。不同处理间标以不同小写字母的柱值在5%水平上差异显著。Fig. 3 Effects of different nutrient managements on grain N concentration of rice CK: fertilizer free control; FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2. Bars superscripted by different small letters are significantly different between treatments at the 5% probability level.
图4 不同养分管理对水稻氮肥利用率的影响 FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2; PFPN: 氮肥偏生产力; AEN: 氮肥农学效率; REN: 氮肥回收效率; PEN: 氮肥生理效率。标以不同小写字母的值表示同一年份下不同处理间在5%水平上差异显著。Fig. 4 Effects of different nutrient managements on nitrogen use efficiency of rice FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2; PFPN: partial factor productivity of N; AEN: agronomic efficiency of N; REN: recovery efficiency of N; PEN: physiological efficiency of N. Bars within the same year superscripted by different small letters are significantly different between different treatments at the 5% probability level.
图5 不同养分管理对水稻百千克籽粒吸氮量的影响 CK: 不施肥对照; FFP: 农民习惯施肥; OPT1: 优化施肥1; OPT2: 优化施肥2。不同处理间标以不同小写字母的柱值在5%水平上差异显著。Fig. 5 Effects of different nutrient managements on N requirement for 100 kg grain of rice CK: fertilizer free control; FFP: farmers’ fertilizer practice; OPT1: optimal fertilizer management 1; OPT2: optimal fertilizer management 2. Bars superscripted by different small letters are significantly different between treatments at the 5% probability level.
FrolkingS, QiuJ, BolesS, XiaoX, LiuJ, ZhuangY, LiC, Qiu X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. , 2002, 16: 38. 1-38. 10[本文引用:1]
[2]
彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, ChristianWitt. 提高中国稻田氮肥利用率的研究策略. , 2002, 35: 1095-1103Peng SB, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS, Roland B, ChristianW. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. , 2002, 35: 1095-1103 (in Chinese with English abstract)[本文引用:2]
[3]
PengS, Buresh RJ, HuangJ, YangJ, ZouY, ZhongX, WangG, ZhangF. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. , 2006, 96: 37-47[本文引用:1]
[4]
ZhangF, FanM, ZhangW. . Regulations. International Fertilizer Industry Association, Brussels, Belgium, 2007. pp 193-201[本文引用:1]
[5]
YinF, FuB, MaoR. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China. , 2007, 7: 136-142[本文引用:1]
Agrawal GD, Lunkad SK, MalkhedT. Diffuse agricultural nitrate pollution of groundwaters in India. , 1999, 39: 67-75[本文引用:1]
[8]
SayerJ, Cassman KG. Agricultural innovation to protect the environment. , 2013, 110: 8345-8348[本文引用:2]
[9]
West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, JohnstonM, MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. , 2014, 345: 324-328[本文引用:2]
[10]
Haefele SM, Jabbar S M A, Siopongco J D L C, Tirol-Padre A, Amarante S T, Cruz P C S, Cosico W C. Nitrogen use efficiency in selected rice (Oryza sativa L. ) genotypes under different water regimes and nitrogen levels. , 2008, 107: 137-146[本文引用:2]
[11]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. , 2013, 39: 101-109LiM, Zhang HC, YangX, Ge MJ, MaQ, Wei HY, Dai QG, Huo ZY, XuK. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. , 2013, 39: 101-109 (in Chinese with English abstract)[本文引用:2]
[12]
孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. , 2014, 40: 1639-1649Sun YJ, Sun YY, XuH, LiY, Yan FJ, Jiang MJ, MaJ. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. , 2014, 40: 1639-1649 (in Chinese with English abstract)[本文引用:1]
[13]
王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. , 2004, 37: 497-501Wang SH, Cao WX, Ding YF, Tian YC, JiangD. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. , 2004, 37: 497-501 (in Chinese with English abstract)[本文引用:1]
[14]
SuiB, FengX, TianG, HuX, ShenQ, GuoS. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. , 2013, 150: 99-107[本文引用:5]
[15]
龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻氮素吸收利用与转运差异研究. , 2014, 20: 796-810Gong JL, Xing ZP, Hu YJ, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, GaoH. Differences of nitrogen uptake, utilization and translocation between indica and japonica super rice. , 2014, 20: 796-810 (in Chinese with English abstract)[本文引用:1]
[16]
邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Roland JB. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. , 2008, 22: 214-219Zou YB, Ao HJ, XiaB, Tang QY, Peng SB, Roland JB. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. , 2008, 22: 214-219 (in Chinese with English abstract)[本文引用:1]
[17]
王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 湖北省早、中、晚稻施氮增产效应及氮肥利用率研究. , 2011, 17: 545-553Wang WN, Lu JW, Lu MX, Li XK, Li YC, LiH. Effect of nitrogen fertilizer application and nitrogen use efficiency of early, middle and late rice in Hubei Province. , 2011, 17: 545-553 (in Chinese with English abstract)[本文引用:1]
[18]
张智, 王伟妮, 李昆, 马红菊, 苟曦, 鲁剑巍. 四川省不同区域水稻氮肥施用效果研究. , 2015, 52: 235-241ZhangZ, Wang WN, LiK, Ma HJ, GouX, Lu JW. Effects of nitrogen fertilization on rice in different regions of Sichuan Province. , 2015, 52: 235-241 (in Chinese with English abstract)[本文引用:1]
[19]
邬刚, 袁嫚嫚, 孙义祥, 钱晓华. 安徽化肥消费现状和粮食作物节肥潜力分析. , 2015, 43(13): 70-73WuG, Yuan MM, Sun YX, Qian XH. Fertilizer consumption and fertilizer saving potential analysis for major cereal crops in Anhui. , 2015, 43(13): 70-73 (in Chinese with English abstract)[本文引用:1]
[20]
马立珩, 张莹, 隋标, 刘彩玲, 王萍, 顾锁娣, 沈其荣, 徐茂, 郭世伟. 江苏省水稻过量施肥的影响因素分析. , 2011, 32(2): 48-52Ma LH, ZhangY, SuiB, Liu CL, WangP, Gu SD, Shen QR, XuM, Guo SW. The impact factors of excessive fertilization in Jiangsu province. , 2011, 32(2): 48-52 (in Chinese with English abstract)[本文引用:2]
[21]
安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用. , 2015, 21: 846-852AnN, Fan MS, Zhang FS. Best crop management practices increase rice yield and nitrogen use efficiency. , 2015, 21: 846-852 (in Chinese with English abstract)[本文引用:3]
[22]
CakmakI, Hoffland E. Zinc for the improvement of crop production and human health. , 2012, 361: 1-2[本文引用:1]
[23]
Fageria NK, Baligar VC. Enhancing nitrogen use efficiency in crop plants. , 2005, 88: 97-185[本文引用:1]
[24]
孟琳, 张小莉, 蒋小芳, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究. , 2009, 15: 290-296MengL, Zhang XL, Jiang XF, Huang QW, Xu YC, Yang XM, Shen QR. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and proper substitution rate. , 2009, 15: 290-296 (in Chinese with English abstract)[本文引用:1]
许仙菊, 许建平, 宁运旺, 张永春, 马洪波. 稻麦轮作周年氮磷运筹对作物产量和土壤养分含量的影响. , 2013, (5): 75-59Xu XJ, Xu JP, Ning YW, Zhang YC, Ma HB. Effects of nitrogen-phosphorus reduction and phosphorus application patterns on crop yields and soil nutrients in rice-wheat rotation system. , 2013, (5): 75-59 (in Chinese with English abstract)[本文引用:1]
[27]
王道中, 张成军, 郭熙盛. 减量施肥对水稻生长及氮素利用率的影响. , 2012, 43(1): 161-165Wang DZ, Zhang CJ, Guo XS. Effects of lower fertilizer on rice growth and nitrogen use efficiency. , 2012, 43(1): 161-165 (in Chinese with English abstract)[本文引用:1]
张玲, 谢崇华, 李伟, 杨国涛. 氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响. , 2008, 22: 551-554ZhangL, Xie CH, LiW, Yang GT. Effects of nitrogen and potassium on starch content and activities of starch synthase in grains of hybrid rice B You 827. , 2008, 22: 551-554 (in Chinese with English abstract)[本文引用:1]
[30]
ZhangF, NiuJ, ZhangW, ChenX, LiC, YuanL, XieJ. Potassium nutrition of crops under varied regimes of nitrogen supply. , 2010, 335(1/2): 21-34[本文引用:1]
[31]
Deng MH, Shi XJ, Tian YH, YinB, Zhang SL, Zhu ZL, Kimura SD. Optimizing nitrogen fertilizer application for rice production in the Taihu Lake Region, China. , 2012, 22: 48-57[本文引用:1]
Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, YinB, ChristieP, Zhu ZL, Zhang FS. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. , 2009, 106: 3041-3046[本文引用:1]
[34]
Chen XP, Cui ZL, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, HouP, Yue SC, RömheldV, Zhang FS. Integrated soil-crop system management for food security. , 2011, 108: 6399-6404[本文引用:1]
[35]
孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾贤文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. , 2011, 37: 2221-2232Sun YJ, Sun YY, Liu SJ, Yang ZY, Cheng HB, Jia XW, MaJ. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. , 2011, 37: 2221-2232 (in Chinese with English abstract)[本文引用:1]
[36]
Jaynes DB, Colvin TS, Karlen DL, Cambardella CA, Meek DW. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. , 2001, 30: 1305-1314[本文引用:1]
[37]
Zhu JG, LiuG, HanY, Zhang YL, Xing GX. Nitrate distribution and destrification in the saturated zone of paddy field under rice/wheat rotation. , 2003, 50: 725-732[本文引用:1]
[38]
ZhangF, ChenX, VitousekP. Chinese agriculture: An experiment for the world. , 2013, 497: 33-35[本文引用:1]
[39]
Zheng YM, Ding YF, Liu ZH, Wang SH. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. , 2010, 9: 1630-1640[本文引用:1]
[40]
ShangQ, GaoC, YangX, WuP, LingN, ShenQ, GuoS. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. , 2014, 50: 715-725[本文引用:1]