关键词:水稻品种; 灌浆期; 1; 2; 4-三氯苯; 光合特性; 产量 Effects of 1,2,4-Trichlorobenzene on Photosynthetic Characteristics of Flag Leaf during Grain Filling Stage and Grain Yield of Two Rice Cultivars LI Yu1, CHEN Lu1, YAN Kai1, SUN Ying1, YIN Yi-Fan1, DING Xiu-Wen1, DAI Qi-Gen1,2,*, ZHANG Hong-Cheng1,2 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
2 Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture, Yangzhou 225009, China
Fund:This study was support by the National Natural Science Foundation of China (31271639) and the Special Fund for Agro-scientific Research in the Public Interest (201303102) AbstractA pot experiment was conducted, using two rice cultivars Ningjing 1 (TCB sensitive) and Yangfujing 8 (TCB tolerant), with five concentration treatments (0, 10, 20, 40, and 80 mg TCB per kg dry soil) to explore the responses of two rice cultivars to TCB, and provide the basis for the high, stable, and safe production of rice. The results indicated that significant differences were found in the effects of TCB treatments on grain yield and photosynthetic parameters of flag leaf between the two cultivars. Plant height, fresh weight, and yield were significantly increased, chlorophyll content, net photosynthetic rate, intercellular CO2 concentration, transpiration rate, and qN were slightly increased, while Fv/ Fm and Fv/ Fo were slightly decreased in the low TCB concentration (10 mg kg-1) treatment of Yangfujing 8. Under the same condition, the net photosynthetic rate, CO2 intercellular concentration, transpiration rate, ΦPSII, Fv/ Fm, Fv/ Fo, qp, yield in Ningjing 1 were slightly declined with significant reduction of stomatal conductance. The photosynthetic characteristics, yield, plant height, fresh weight in Ningjing 1 were decreased significantly, while Yangfujing 8 showed more resistance and adaptation to TCB at 20 mg kg-1. Both cultivars showed significant decrease in growth, photosynthesis and yield in treatments with high TCB concentrations (40 and 80 mg kg-1), with the greater decrements in Ningjing 1. The effect of TCB on photosynthetic characteristics and yield of rice was not only related to TCB concentration, but also to cultivars. Low TCB levels slightly promoted the plant height, fresh weight, chlorophyll content, photosynthetic characteristics and rice yield in Yangfujing 8 that showed stronger tolerance to TCB than Ningjing 1, under high TCB concentrations (40 and 80 mg kg-1).
Keyword:Rice cultivar; Grain-filling stage; 1; 2; 4-three chlorobenzene; Photosynthetic characteristics; Yield Show Figures Show Figures
表1 1, 2, 4-三氯苯对2个水稻品种灌浆盛期株高与生物量的影响 Table 1 Effect of 1, 2, 4-TCB on plant height and biomass of the two rice cultivars at full grain-filling stage
基因型 Genotype
1, 2, 4-TCB浓度 1, 2, 4-TCB concentration (mg kg-1)
株高 Plant height (cm)
地上部鲜重 Shoot fresh weight (g)
地下部鲜重 Root fresh weight (g)
宁粳1号 Ningjing 1
0
95.2 deCD
119.37 cC
16.87 aA
10
95.7 cdC
117.70 cC
16.74 aA
20
92.0 fE
112.43 dD
13.83 cD
40
88.5 gF
102.57 eE
11.61 eF
80
80.8 hG
89.20 fF
9.13 hG
扬辐粳8号 Yangfujing 8
0
97.2 bB
128.50 bB
15.93 bBC
10
98.1 aAB
132.52 aA
16.47 aAB
20
96.5 bcBC
127.27 bB
15.80 bC
40
94.3 eD
112.27 dD
13.03 dE
80
88.2 gF
103.59 eE
10.33 gF
基因型F值 F-value of genotype (A)
542.32* *
624.85* *
33.26* *
浓度F值 F-value of concentration (B)
528.27* *
477.02
496.62* *
基因型× 浓度F值 F-value of (A× B)
31.77* *
9.98* *
24.79* *
Values followed by different letters within a column are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively. 同列中标以不同大、小写字母的值分别在0.01和0.05水平差异显著。
表1 1, 2, 4-三氯苯对2个水稻品种灌浆盛期株高与生物量的影响 Table 1 Effect of 1, 2, 4-TCB on plant height and biomass of the two rice cultivars at full grain-filling stage
图1 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片叶绿素含量(SPAD值)的影响柱上标以不同大、小写字母分别表示其差异为0.01和0.05显著水平。Fig. 1 Effect of 1, 2, 4-TCB on chlorophyll content (value of SPAD) of leaves in the two rice cultivars at full grain-filling stageBars superscripted by different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图2 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片光合速率的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 2 Effect of 1, 2, 4-TCB on net photosynthetic rate of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图3 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片气孔导度的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 3 Effect of 1, 2, 4-TCB on stomatal conductance of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图4 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片胞间CO2浓度的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 4 Effect of 1, 2, 4-TCB on intercellular CO2concentration of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图5 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片蒸腾速率的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 5 Effect of 1, 2, 4-TCB on transpiration rate of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图6 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片实际光化学效率的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 6 Effect of 1, 2, 4-TCB on Ф PSII of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图7 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片Fv/Fm (最大光化学效率)的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 7 Effect of 1, 2, 4-TCB on Fv/Fm of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图8 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片Fv/Fo (PSII的潜在活性)的影响标以不同大、小写字母各点数值在0.01和0.05水平差异显著。Fig. 8 Effect of 1, 2, 4-TCB on Fv/Fo of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图9 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片qP的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 9 Effect of 1, 2, 4-TCB on qP of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
图10 1, 2, 4-三氯苯胁迫对灌浆盛期水稻叶片qN的影响标以不同大、小写字母的各点数值在0.01和0.05水平差异显著。Fig. 10 Effect of 1, 2, 4-TCB on qN of leaves in the two rice cultivars at full grain-filling stageValues of data points labeled with different letters are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively.
表2 1, 2, 4-TCB对2个水稻品种产量及其构成因素的影响 Table 2 Effect of 1, 2, 4-TCB on grain yield and its components of rice
基因型 Genotype
1, 2, 4-TCB浓度 1, 2, 4-TCB concentration (mg kg-1)
每盆产量 Grain yield (g per pot)
每盆穗数 No. of panicles per pot
每穗粒数 Grain number per panicle
结实率 Seed-setting rate (%)
千粒重 1000-grain weight (g)
宁粳1号 Ningjing 1
0
74.60 aA
28.00 aA
108.40 abA
0.93 aA
26.43 aA
10
73.48 abAB
27.33 aAB
108.20 bA
0.93 aABC
26.72 aA
20
61.99 dD
25.33 bBC
103.00 cB
0.90 bBC
26.40 aA
40
45.14 fF
22.00 cD
90.40 eD
0.85 cD
26.70 aA
80
24.96 hH
14.67 eF
78.00 fE
0.82 dE
26.60 aA
扬辐粳8号 Yangfujing 8
0
66.92 cC
27.67 aAB
110.20 abA
0.93 aAB
23.90 bB
10
71.69 bAB
28.07 aA
112.00 bA
0.94 aA
23.65 bB
20
65.36 cC
27.00 abAB
108.60 cB
0.93 aAB
23.97 bB
40
49.04 eE
23.33 cCD
97.80 eD
0.90 bC
23.88 bB
80
34.43 gG
18.33 dE
91.80 fE
0.86 cD
23.79 bB
基因型F值 F-value of genotype (A)
17.19* *
17.06* *
74.37* *
28.06* *
418.82* *
浓度F值 F-value of concentration (B)
1255.15* *
135.21* *
170.53* *
68.47* *
0.45
基因型× 浓度F值 F-value of (A× B)
38.43* *
2.95*
7.46* *
3.49*
0.32
Values followed by different letters within a column are significantly different at the 0.01 (capital) and 0.05 (lowercase) probability levels, respectively. 同列中标以不同大、小写字母的值分别在0.01和0.05水平差异显著。
表2 1, 2, 4-TCB对2个水稻品种产量及其构成因素的影响 Table 2 Effect of 1, 2, 4-TCB on grain yield and its components of rice
宋玉芳, 周启星, 许华夏, 任丽萍, 宋雪英, 龚平. 菲、芘、1, 2, 4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应. 生态学报, 2002, 21: 1945-1950Song YF, Zhou QX, Xu HX, Ren LP, Song XY, GongP. Eco-toxicological effects of phenanthrene, pyrene and 1, 2, 4- trichlorobenzene in soils on the inhibition of root elongation of higher plants. Acta Ecol Sin, 2002, 21: 1945-1950 (in Chinese with English abstract)[本文引用:1]
[2]
DiazJ, RenduelesM, DiazM. 1, 2, 4-trichlorobenzene flow characteristics in saturated homogeneous and stratified porous media. Water Air Soil Pollut, 2006, 177: 3-17[本文引用:1]
[3]
周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单. 中国环境监测, 1990, 6(4): 1-3Zhou WM, Fu DQ, Sun ZG. Determination of black list of China’s priority pollutants in water. Res Environ Sci, 1990, 6(4): 1-3 (in Chinese with English abstract)[本文引用:1]
[4]
Wang MJ, Jones KC. Analysis of chlorobenzenes in sewage sludge by capillary gas chromatography. Chemosphere, 1991, 23: 677-691[本文引用:1]
[5]
Rogers HR, Campbell JA, CrathorneB, Dobbs AJ. The occurrence of chlorobenzenes and permethrins in twelve U. K. sewage sludges. Water Res, 1989, 23: 913-921[本文引用:1]
[6]
Wild SR, Jones KC. Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci Total Environ, 1992, 119: 85-119[本文引用:1]
[7]
Wang MJ, Jones KC. Behavior and fate of chlorobenzenes in spiked and sewage sludge-amended soil. Environ Sci Technol, 1994, 28: 1843-1852[本文引用:1]
[8]
莫测辉, 蔡全英, 吴启堂, 李桂荣, 王伯光, 田凯. 城市污泥中有机污染物的研究进展. 农业环境保护, 2001, 20: 273-276Mo CH, Cai QY, Wu QT, Li GR, Wang BG, TianK. Research advances on organic pollutants in municipal sludge. Agric Environ Prot, 2001, 20: 273-276 (in Chinese with English abstract)[本文引用:1]
[9]
张丽珊, 于殿臣, 刘海玲, 姚家彪, 朱岩, 尹昭华, 姜萍, 可夫. 慢速渗滤土地处理系统对沈阳西部城市污水有机污染物净化效果的研究. 应用生态学报, 1992, 3: 355-362Zhang LS, Yu DC, Liu HL, Yao JB, ZhuY, Yin ZH, JiangP, KeF. Purification effect of slow rate land treatment system on organic pollutants in municipal wastewater from west Shenyang. Chin J Appl Ecol, 1992, 3: 355-362 (in Chinese with English abstract)[本文引用:1]
[10]
蔡全英, 莫测辉, 吴启堂, 王伯光. 城市污泥堆肥处理过程中有机污染物的变化. 农业环境保护, 2001, 20(3): 186-189Cai QY, Mo CH, Wu QT, Wang BG. Variation of organic pollutants in treatment of sewage sludge during composting. Agric Environ Prot, 2001, 20(3): 186-189 (in Chinese with English abstract)[本文引用:1]
[11]
杜青平, 贾晓珊, 袁保红. 1, 2, 4-三氯苯对水稻种子萌发及幼苗生长的毒性机理. 应用生态学报, 2006, 17: 2185-2188Du QP, Jia XS, Yuan BH. Toxic effects of 1, 2, 4-trichlorobenzene on rice seed germ ination and seedling growth. Chin J Appl Ecol, 2006, 17: 2185-2188 (in Chinese with English abstract)[本文引用:2]
[12]
王泽港, 葛才林, 万定珍, 郦志文, 罗时石, 杨建昌. 1, 2, 4-三氯苯和萘对水稻幼苗生长的影响. 农业环境科学学报, 2006, 25: 1402-1407Wang ZG, Ge CL, Wan DZ, Li ZW, Luo SS, Yang JC. Effects of 1, 2, 4-trichlorobenzene and Naphthalene on growth of rice seedling. J Agro-Environ Sci, 2006, 25: 1402-1407 (in Chinese with English abstract)[本文引用:3]
[13]
张国良, 陈文军, 仇利民, 孙国荣, 戴其根, 张洪程. 不同基因型水稻苗期对1, 2, 4-三氯苯胁迫的生理响应. 作物学报, 2009, 35: 733-740Zhang GL, Chen WJ, Qiu LM, Sun GR, Dai QG, Zhang HC. Physiological response to 1, 2, 4-trichlorobenzene stress of different rice genotypes in seedlings. Acta Agron Sin, 2009, 35: 733-740 (in Chinese with English abstract)[本文引用:2]
[14]
陈文军, 张国良, 孙国荣, 戴其根, 张洪程, 陶金飞, 孙洁, 严林锋. 水稻耐1, 2, 4-三氯苯胁迫基因型的苗期筛选. 中国农业科学, 2008, 27: 1003-1008Chen WJ, Zhang GL, Sun GR, Dai QG, Zhang HC, Tao JF, SunJ, Yan LF. Screening of tolerant rice genotypes to 1, 2, 4-trichlorobenzene stress at seedling stage. J Agro-Environ Sci, 2008, 27: 1003-1008 (in Chinese with English abstract)[本文引用:2]
[15]
丁秀文, 张国良, 戴其根, 朱青. 1, 2, 4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响. 作物学报, 2014, 40: 487-496Ding XW, Zhang GL, Dai QG, ZhuQ. Effects of 1, 2, 4-trichlorobenzene on growth and physiological characteristics of rice at maximum tillering stage. Acta Agron Sin, 2014, 40: 487-496 (in Chinese with English abstract)[本文引用:8]
[16]
王泽港, 万定珍, 杨亚春, 葛才林, 马飞, 杨建昌. 1, 2, 4-三氯苯和萘对水稻产量及品质的影响. 中国水稻科学, 2006, 20: 295-300Wang ZG, Wan DZ, Yang YC, Ge CL, MaF, Yang JC. Effects of 1, 2, 4-trichlorobenzene and naphthalene on grain yield and quality of rice. Chin J Rice Sci, 2006, 20: 295-300 (in Chinese with English abstract)[本文引用:1]
[17]
洛育, 张凤鸣, 白良明, 孙世臣, 姜辉, 张玉华, 耿立清. 硝基苯污染对水稻生长发育及稻米安全性的影响. 中国农学通报, 2009, 25(24): 468-471LuoY, Zhang FM, Bai LM, Sun SC, JiangH, Zhang YH, Geng LQ. Effect of contamination of nitrobenzene on rice growth and food safety of rice. Chin Agric Sci Bull, 2009, 25(24): 468-471 (in Chinese with English abstract)[本文引用:2]
[18]
王泽港, 骆剑峰, 高红明, 万定珍, 葛才林, 罗时石, 杨建昌. 1, 2, 4-三氯苯和萘对水稻抽穗期叶片光合特性的影响. 中国农业科学, 2005, 38: 1113-1119Wang ZG, Luo JF, Gao HM, Wan DZ, Ge CL, Luo SS, Yang JC. Effects of 1, 2, 4-trichlorobenzene and naphthalene stress on photosynthetic characteristics of rice at heading period. Sci Agric Sin, 2005, 38: 1113-1119 (in Chinese with English abstract)[本文引用:5]
丁艳, 葛才林, 王泽港, 杜庆才. 小麦幼苗对镉和1, 2, 4-三氯苯污染的响应. 中国农业大学学报, 2011, 16(3): 48-52DingY, Ge CL, Wang ZG, Du QC. Response of Cd and 1, 2, 4-trichlorobenzene pollutants on growth of wheat seedlings. J China Agric Univ, 2011, 16(3): 48-52 (in Chinese with English abstract)[本文引用:1]
RalphJ, GademannR. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Bot, 2005, 82: 222-237[本文引用:1]
[23]
徐应明, 袁志华, 李军幸, 戴晓华. 硝基苯和氯苯灌溉对春小麦品质影响研究. 灌溉排水学报, 2004, 23(3): 17-19Xu YM, Yuan ZH, Li JX, Dai XH. Research nitrobenzene and chlorobenzene irrigation on spring wheat quality. J Irrig Drain, 2004, 23(3): 17-19 (in Chinese)[本文引用:1]
[24]
刘宛, 孙铁珩, 李培军, 周启星, 台培东, 张春桂, 许华夏, 张海荣. 三氯苯胁迫对大豆下胚轴膜脂过氧化的影响. , 2002, 21: 413-416LiuW, Sun TH, Li PJ, Zhou QX, Tai PD, Zhang CG, Xu HX, Zhang HR. Effect of 1, 2, 4-Trichlorobenzene stress on membrane lipid peroxidation in soybean hypocotyls. , 2002, 21: 413-416 (in Chinese with English abstract)[本文引用:1]
[25]
刘宛, 宋玉芳, 周启星, 李培军, 孙铁珩, 姚德明. 氯苯胁迫对小麦种子发芽和幼苗生长的影响. 农业环境保护, 2001, 20(2): 65-68LiuW, Song YF, Zhou QX, Li PJ, Sun TH, Yao DM. Effect of chlorobenzene-stress on seed germination and seedling growth of wheat. Agro-Environ Prot, 2001, 20(2): 65-68 (in Chinese with English abstract)[本文引用:1]
[26]
Ben-asherJ, TsuyukiI, Bravdo BA, SagihM. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag, 2006, 83: 13-21[本文引用:1]
[27]
Berry JA, , 1982. pp 263-345[本文引用:1]
[28]
葛江丽, 石雷, 谷卫彬, 唐宇丹, 张金政, 姜闯道, 任大明. 盐胁迫条件下甜高粱幼苗的光合特性及光系统II功能调节. 作物学报, 2007, 33: 1272-1278Ge JL, ShiL, Gu WB, Tang YD, Zhang JZ, Jiang CD, Ren DM. Photosynthetic characteristics and the regulation of photosystem II function in salt stressed sweet sorghum seedlings. Acta Agron Sin, 2007, 33: 1272-1278 (in Chinese with English abstract)[本文引用:1]
[29]
温国胜, 田海涛, 张明如, 蒋文伟. 叶绿素荧光分析技术在林木培育中的应用. 应用生态学报, 2006, 17: 1973-1977Wen GS, Tian HT, Zhang MR, Jiang WW. Application of chlorophyll fluorescence analysis in forest tree cultivation. Chin J Appl Ecol, 2006, 17: 1973-1977 (in Chinese with English abstract)[本文引用:1]
[30]
王北洪, 黄木易, 马智宏, 王纪华. 条锈病对冬小麦叶绿素荧光、光合及蒸腾作用的影响. 华北农学报, 2004, 19(2): 92-94Wang BH, Huang MY, Ma ZH, Wang JH. Effect of stripe rust on chlorophyll fluorescence and photosynthesis of winter wheat. Agta Agric Boreali-Sin, 2004, 19(2): 92-94 (in Chinese with English abstract)[本文引用:1]
[31]
Kiang NY, SiefertJ, Govindjee, Blankenship R E. Spectral signatures of photosynthesis: I. Review of earth organisms. Astrobiology, 2007, 7: 222-251[本文引用:1]
[32]
张雪芬, 陈怀亮, 郑有飞, 邹春辉, 陈东, 付祥建. 冬小麦冻害遥感监测应用研究. 南京气象学院学报, 2006, 29(1): 94-100Zhang XF, Chen HL, Zheng YC, Zou CH, ChenD, Fu XJ. Monitoring the freezing injury of winter wheat by remote sensing. J Nanjing Inst Meteorol, 2006, 29(1): 94-100 (in Chinese with English abstract)[本文引用:1]
[33]
RizzaF, PaganiD, Stanca AM, CattivelliL. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. , 2001, 20: 389-396[本文引用:1]
[34]
GrzesiakM, RzepkaA, Czyczylo-MyszaI, HuraT, DziurkaM. Emission and excitation spectra of drought-stressed and non- stressed maize and triticale seedling leaves. , 2008, 524: 213-220[本文引用:1]
[35]
翁永玲, 宫鹏. 土壤盐渍化遥感应用研究进展. 地理科学, 2006, 26: 369-375Weng YL, GongP. Research progress of application of soil salinization remote sensing. Sci Geogr Sin, 2006, 26: 369-375 (in Chinese)[本文引用:1]
[36]
Pu RL, KellyM, Anderson GL, GongP. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogram Eng Remote Sens, 2008, 74: 65-75[本文引用:1]
[37]
Huang WJ, Lamb DW, NiuZ, Zhang YJ, Liu LY, Wang JH. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agric, 2007, 8: 187-197[本文引用:1]
[38]
张雷明, 上官周平, 毛明策, 于贵端. 长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响. 应用生态学报, 2003, 14: 695-698Zhang LM, Shang-Guan Z P, Mao M C, Yu G D. Effects of long term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat. Chin J Appl Ecol, 2003, 14: 695-698 (in Chinese with English abstract)[本文引用:1]
[39]
王荣富, 张云华, 钱立生, 于江龙. 超级杂交稻两优培九及其亲本的光氧化特性. 应用生态报, 2003, 14: 1309-1312Wang RF, Zhang YH, Qian LS, Yu JL. Photooxidation characteristics of super hybrid rice “Liangyoupeijiu” and its parents. Chin J Appl Ecol, 2003, 14: 1309-1312 (in Chinese with English abstract)[本文引用:1]
[40]
李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. , 2006, 26: 2186-2196LiX, FengW, Zeng XC. Advances in chlorophyll fluorescence analysis and its uses. , 2006, 26: 2186-2196 (in Chinese with English abstract)[本文引用:1]
[41]
SubhashN, WenzelO, Lichtenthaler HK. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ, 1999, 69: 215-213[本文引用:1]
[42]
Van KootenO, Snel J F H. The use of chlorophyll nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147-150[本文引用:1]