关键词:黄麻; 遗传资源; 分子标记; DNA指纹图谱 Construction of Molecular Fingerprinting Map in Gene Pool of Jute with SRAP, ISSR, and SSR Markers WU Gui-Fen1,2, XU Xian-Jun3, XU Jian-Tang1, TAO Ai-Fen1, ZHANG Li-Wu1, WEI Li-Zhen4, PAN Mo5, FANG Ping-Ping1, LIN Li-Hui1, QI Jian-Min1,* 1Key Laboratory of Ministry for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Province International Cooperation Base for Genetics, Breeding and Multiple Utilization of Characteristic Economy Crops in South China , Fuzhou 350002, China
2 Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
3 Wuyishan Biological Resource Institute of Fujian Province, Fuzhou 354300, China
4 Third Middle School of Fuzhou, Fuzhou 350002, China
5 Fuzhou Tanditongren Mdt InfoTech Ltd., Fuzhou 350001, China
AbstractAn experiment was conducted using 231 jute germplasm resources from abroad and at home to construct DNA fingerprints of jute varieties with SRAP, ISSR, SSR marker, and the DNA fingerprint analysis software. The results showed that 96 DNA fingerprints from 231 jute germplasm resources with 35 pairs of selected SRAP primers, 45 DNA fingerprints from 96 jute varieties with 11 selected polymorphic ISSR primers, and 13 DNA fingerprints from 48 jute varieties with 49 selected polymorphic SSR primers were constructed. This study completed a total of 154 genomic DNA molecular fingerprint maps of jute varieties. Every identified jute variety had its unique “ID”. Other 77 local varieties had not been able to be identified due to their high genetic similarity with some varieties. It showed that jute local variety has a serious phenomenon of synonym.
图1 SRAPM18E15引物的扩增结果 M: marker; 1~48: 48份黄麻品种的电泳扩增效果图。Fig. 1 Amplified result of SRAP M18E15 M: marker; 1-48: electrophoresis of DNA in 48 jute varieties amplified with SRAP M18E15.
图2 引物U889的扩增结果 M: marker; 1~48: 48份黄麻品种的电泳扩增效果图。Fig. 2 Amplified result with U889 M: marker; 1-48: electrophoresis of DNA in 48 jute varieties amplified with U889.
4 结论绘制了154份黄麻品种基因源DNA指纹图谱。SRAP、ISSR和SSR 3种标记对绘制黄麻品种分子身份证的贡献率分别为31.6%、52.6%和5.3%, 尚有10.5%的品种很可能是因为同种异名而未被鉴定出来。复合分子标记比单一的分子标记在黄麻种质资源DNA指纹图谱数据库的建立中更具优越性。 The authors have declared that no competing interests exist.
祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. , 1997, 23: 677-682Qi JM, Li WM, Wu WR. Origin and evolution of jute. , 1997, 23: 677-682 (in Chinese)[本文引用:2][CJCR: 1.667]
[3]
李爱青. 肯尼亚黄麻红麻种质资源的考察报告. , 1990, 1: 16-20Li AQ. The visiting report of jute and kenaf germplasms in Kenya. , 1990, 12(1): 16-21 (in Chinese)[本文引用:1]
[4]
徐静, 董化玲. 黄麻服饰用纺织产品开发及前景. 纺织科技进展. , 2005, 50: 904-911XuJ, Dong HL. Textile product development and foregrounds for jute dress: textile science and technology progress. , 2005, 50: 904-911[本文引用:1][CJCR: 0.3902]
[5]
黎宇, 程新奇, 郭安平. 我国黄麻种质资源的研究进展概述. , 1998, 20(3): 38-41LiY, Cheng XQ, Guo AP. Summary of the progress of jute germplasm resources in China. , 1998, 20(3): 38-41 (in Chinese)[本文引用:1]
[6]
SmarttJ, Gregory WC, Gregory MP. The genomes of Arachis hypogaea: cytogenetiestudies of putative genome donors. , 1978, 27: 665-675[本文引用:1]
[7]
程新奇, 郭安平, 肖瑞芝, 孙家曾. 黄麻种质资源的鉴定与利用分析. , 1993, (4): 1-8Cheng XQ, Guo AP, Xiao RZ, SunJ Z. identification and utilization analysis of Jute germplasm resources. , 1993, (4): 1-8 (in Chinese)[本文引用:1]
[8]
Latif MA, Rafii YusopM, Motiur RahmanM. Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. , 2011, 334: 282-289[本文引用:1][JCR: 1.804]
[9]
Chuang HY, Huu-ShenL U R, Kae-KangH W U, ChangM C. Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers. , 2011, 52(4): 31-40[本文引用:2][JCR: 0.864]
[10]
AshkenaziV, ChaniE, LaviU. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. , 2001, 44: 50-62[本文引用:2][JCR: 1.668]
[11]
ErcisliS, IpekA, BarutE. SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). , 2011, 49: 555-561[本文引用:1]
[12]
Yu HF, Wang JS, Zhao ZQ, Sheng XG, Gu HH. DNA fingerprinting and genetic purity testing of a new broccoli hybrid using SSR markers. , 2013, 41: 464-468[本文引用:1][JCR: 0.704]
[13]
Rodriguez M JB. Microsatellite DNA fingerprinting technology for coconut and oil palm. , 2011, 10: 88-95[本文引用:1][JCR: 0.152]
[14]
OnasanyaA, BassoA, Somado EA, GasoreE. R, Nwilene F E, Nwilene F E, Ingelbrecht I L, Lamo J, Wydra K, Ekperigin M M, Langa M, Oyelakin O, Oyelakin O, Sere Y, Winter S, Onasanya R O. Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. , 2010, 9: 89-105[本文引用:1][CJCR: 0.5439]
[15]
CaseC, Kand olaK, ChuiL, LiV, NixN, JohnsonR. Examining DNA fingerprinting as an epidemiology tool in the tuberculosis program in the Northwest Territories, Canada. , 2013, 9(3): 72[本文引用:1]
[16]
Tyler KD, WangG, Tyler SD, Johnson WM. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. , 1997, 35: 339[本文引用:1][JCR: 4.068]
[17]
CantiniC, Iezzoni AF, Lamboy WF, BoritzkiM, StrussD. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. , 2001, 126: 205-209[本文引用:1]
[18]
WünschA, Hormaza JI. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. , 2002, 125: 59-67[本文引用:1][JCR: 1.643]
[19]
PagliaG, MorganteM. PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. , 1998, 4: 173-177[本文引用:1][JCR: 3.251]
[20]
VaneechoutteM. DNA fingerprinting techniques for microorganisms. , 1996, 6: 115-142[本文引用:1][JCR: 2.262]
[21]
PartisL, CroanD, GuoZ, Coldham CT, MurbyJ. Evaluation of a DNA fingerprinting method for determining the species origin of meats. , 2000, 54: 369-376[本文引用:1][JCR: 2.754]
[22]
PrevostA, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. , 1999, 98: 107-112[本文引用:1][JCR: 3.658]
[23]
BonitoG, Isikhuemhen OS, VilgalysR. Identification of fungi associated with municipal compost using DNA-based techniques. , 2010, 101: 1021-1027[本文引用:1][JCR: 4.75]
[24]
徐建堂, 祁建民, 方平平, 李爱青, 林荔辉, 吴建梅, 陶爱芬. CTAB法提取红麻总DNA技术优化与ISSR和SRAP扩增效果. , 2007, 29(4): 179-183Xu JT, Qi JM, Fang PP, Li AQ, Lin LH, Wu JM, Tao AF. Optimized CTAB protocol for extracting genomic DNA from kenaf and improved PCR amplifications of ISSR and SRAP. , 2007, 29(4): 179-183 (in Chinese with English abstract)[本文引用:1][CJCR: 0.3952]
[25]
Zhang GQ, QI JM, Zhang XC, Fang PP, Su JG, Tao AF, LanT, Wu WR, Liu AM. A genetic linkage map of kenaf (Hibiscus cannabinus L. ) based on SRAP, ISSR and RAPD markers. , 2011, 10: 1346-1353[本文引用:1][CJCR: 1.0251]