关键词:籽粒苋; AhNAD-ME; 序列特征; 表达模式; 原核表达 Sequence Characteristics and Expression of NAD-malic enzyme inAmaranthus hypochondriacusL. BAI Yun-Feng1,3,*, NIE Jiang-Ting2, ZHANG Zhong-Liang1, LI Ping1, ZHANG Wei-Feng1, YAN Jian-Jun1, FENG Rui-Yun1, ZHANG Yao1 1 Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030032, China
2 College of Bioengineering, Shanxi University, Taiyuan 030006, China
3China Key Laboratory of Loess Plateau Crop Gene Resources and Germplasm Creation, Ministry of Agriculture, Taiyuan 030006, China
AbstractThe NAD(P)-malic enzyme (NAD(P)-ME) found in many metabolic pathways catalyzes the oxidative decarboxylation of L-malate, which results in producing pyruvate, CO2 and NAD(P)H. In C4 plants, NAD(P)-ME plays a key role in photosynthetic carbon fixation. This study was aimed to characterize the AhNAD-ME in dicotyledonous C4Amaranthus hypochondriacus by sequence analysis, examine the expression patterns ofAhNAD-ME gene in different tissues and different durations of illumination time, and construct a recombinant plasmid pEASY-E1 harboring theAhNAD-ME cDNA and then transform the plasmid intoE. coli Transette (DE3) for prokaryotic expression after IPTG induction. The result showed that AhNAD-ME contains all of the motifs required for a complete and functional malic enzyme and is localized specifically to the mitochondrial matrix. Semi-quantitative RT-PCR results showed thatAhNAD-ME was constitutively expressed in all examined tissues, with different expression levels, and strongly up-regulated under light in the leaf and stem. Results of SDS-PAGE demonstrated that the specific fusion protein with an expected molecular weight was successfully expressed inE. coli transette (DE3) induced by IPTG.
Keyword:Amaranthus hypochondriacus; AhNAD-ME; Sequence characteristics; Expression pattern; Prokaryotic expression Show Figures Show Figures
图4 图 AhNAD-ME原核表达SDS-PAGE电泳M: 蛋白质分子量标准; 1: 不含重组质粒的菌株Transette (DE3) 在30℃诱导2 h后的表达产物; 2~9: 含有重组质粒的菌株Transette (DE3)的表达产物。其中2、3、4和5分别为30℃诱导0、2、4和6 h后的表达产物; 6和7为30℃诱导4 h后的沉淀和上清; 8和9为16℃诱导4 h后的沉淀和上清液。Fig. 4 SDS-PAGE analysis of the AhNAD-MEexpressionM: premixed protein marker; 1 refers to Transette (DE3) without recombined plasmid induced by IPTG under 30℃ for 2 h; 2, 3, 4, and 5 refer to Transette (DE3) with recombined plasmid induced by IPTG for 0, 2, 4, and 6 hours, respectively; 6 and 7 refer to precipitate and supernatant liquor of Transette (DE3) with recombined plasmid induced by IPTG under 30℃ for 4 hours, respectively; 8 and 9 refer to precipitate and supernatant liquor of Transette (DE3) with recombined plasmid induced by IPTG under 16℃ for 4 hours, respectively.
ShearerH L, TurpinD H, DelinisD T. Characterization of NADP-dependent malic enzyme from developing castor oil seed endosperm. , 2004, 429: 134-144[本文引用:1][JCR: 3.37]
[2]
DrincovichM F, CasatiP, AndreoC S. NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. , 2001, 490: 1-6[本文引用:1][JCR: 3.582]
[3]
DaviesD D. The fine control of cytosolic pH. , 1986, 67: 702-706[本文引用:1][JCR: 6.555]
[4]
董庆龙, 王海荣, 安淼, 余贤美, 王长君. 苹果NADP依赖的苹果酸酶基因克隆、序列和表达分析. , 2013, 46: 1857-1866DongQ L, WangH R, AnM, YuX M, WangC J. Cloning, sequence and expression analysis of NADP-malic enzyme genes in apple. , 2013, 46: 1857-1866 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[5]
CasatiP, DrincovichM F, EdwardsG E, AndreoC S. Malate metabolism by NADP-malic enzyme in plant defense. , 1999, 61: 99-105[本文引用:1][JCR: 3.15]
[6]
FuZ Y, ZhangZ B, HuX J, ShaoH B, PingX. Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. , 2009, 332: 591-602[本文引用:1][JCR: 1.804]
[7]
BerryJ O, YerramsettyP, ZielinskiA M, MureC M. Photosynthetic gene expression in higher plants. , 2013, 117: 91-120[本文引用:1][JCR: 3.15]
[8]
MoreneyJ V, JungnickN, DimarioR J, LongstrethD J. Photorespiration and carbon concentrating mechanisms: two adaptation to high O2, low CO2 conditions. , 2013, 117: 121-131[本文引用:1][JCR: 3.15]
[9]
LangdaleJ A. C4 cycles: past, present, and future research on C4 photosynthesis. , 2011, 23: 3879-3892[本文引用:1][JCR: 9.251]
[10]
TaustaS, CoyeH, RothermelB, StiefelV, NelsonT. Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. , 2002, 50: 635-652[本文引用:1][JCR: 3.518]
[11]
DetarsioE, MaurinoV G, AlvarezC E, MuellerG L. Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots. , 2008, 68: 355-367[本文引用:1][JCR: 3.518]
[12]
MaurinoV, DrincovichM, CasatiP, AndreoC, EdwardsG, KuM, GuptaS, FranceschiV. NADP-malic enzyme: immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. , 1997, 48: 799-811[本文引用:1][JCR: 5.242]
DetarsioE, AndreoC S, DrincocichM F. Basic residues play key roles in catalysis and NADP+-specificity in maize (Zea mays L. ) photosynthetic NADP+-dependent malic enzyme. , 2004, 382: 1025-1030[本文引用:1][JCR: 4.654]
[15]
张锡州, 李廷轩, 王昌金. 富钾植物籽粒览研究进展. , 2005, 21(4): 230-235ZhangX Z, LiT X, WangC J. Progress of research on K-rich plant of grain amaranth. , 2005, 21(4): 230-235 (in Chinese with English abstract)[本文引用:1]
[16]
李廷轩, 马国瑞. 籽粒苋富钾基因型的根系形态和生理特性. , 2004, 30: 1145-1151LiT X, MaG R. Physiological and morphological characteristics of roots in grain amaranth genotypes enrichment in potassium. , 2004, 30: 1145-1151 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[17]
JohnsonB L, HendersonT L. Water use patterns of grain amaranth in the northern great plains. , 2002, 94: 1437-1443[本文引用:1][JCR: 1.518]
[18]
ShuklaS, BhargavaA, ChatterjeeA, SrivastavaA, SinghS P. Genotypic variability in vegetable amaranth (Amaranthus tricolor L. ) for foliage yield and its contributing traits over successive cuttings and years. , 2006, 151: 103-110[本文引用:1][JCR: 1.643]
[19]
李平, 白云凤, 张维锋. 籽粒苋苹果酸酶基因克隆及分析. , 2010, 30: 229-236LiP, BaiY F, ZhangW F. Cloning and analysis of NAD-ME gene of Amaranthus hypochondriacus. , 2010, 30: 229-236 (in Chinese with English abstract)[本文引用:1][CJCR: 1.321]
[20]
李平, 白云凤, 冯瑞云, 王原媛, 张维锋. 籽粒苋苹果酸酶(NAD-ME)基因密码子偏好性分析. , 2011, 17: 12-17LiP, BaiY F, FengR Y, WangY Y, ZhangW F. Analysis of codon bias of NAD-ME gene in Amarnathus hypochondriacus. , 2011, 17: 12-17 (in Chinese with English abstract)[本文引用:1][CJCR: 0.867]
[21]
PetersenT, BrunakS, von HeijneG, NielsenH. SignalP 4. 0: discriminating signal peptides from transmembrane regions. , 2011, 8: 785-786[本文引用:1][JCR: 23.565]
[22]
TruscottK N, Brand nerK, PfannerN. Mechanisms of Protein Import into Mitochondria. , 2003, 13: R326-R337[本文引用:2][JCR: 9.494]
[23]
vonHeijne G, SteppuhnJ, HerrmannR G. Domain structure of mitochondrial and chloroplast targeting peptides. , 1989, 180: 535-545[本文引用:1]
[24]
ChristopherJ, TonkinC J, FothB J, RalphS A, StruckN, CowmanA F, McFaddenG I. Evolution of malaria parasite plastid targeting sequences. , 2008, 105: 4781-4785[本文引用:1][JCR: 9.737]
[25]
LongJ J, WangJ L, BerryJ O. Cloning and analysis of the C4 photosynthetic NAD-dependeng malic enzyme of Amaranth Mitochondria. , 1994, 269: 2827-2833[本文引用:1][JCR: 4.651]
[26]
MurataT, OhsugiR, MatsuokaM, NakamotoH. Purification and characterization of NAD malic enzyme from Leaves of Eleusine coracana and Panicum dichotomiflorum. , 1989, 89: 316-324[本文引用:1][JCR: 6.555]
[27]
OshugiR, MurataT. Leaf anatomy, post-illumination CO2 burst and NAD-malic enzyme activity in Panicum dichotomiflorum. , 1980, 21: 1329-1333[本文引用:1][JCR: 4.134]
[28]
EspositoD, ChatterjeeD K. Enhancement of soluble protein expression through the use of fusion tags. , 2006, 17: 353-358[本文引用:1]
[29]
WaughD S. Making the most of affinity tags. , 2005, 23: 316-320[本文引用:1][JCR: 9.66]