关键词:核盘菌; 甘蓝型油菜; 防御基因; 表达差异 Differential Expression of Defense Related Genes inBrassica napus Infected bySclerotinia sclerotiorum MA Tian-Tian1,**, PENG Qi2,**, CHEN Song2, ZHANG Jie-Fu2,* 1National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University, Nanjing 210095, China
2Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture / Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Fund: AbstractSclerotinia stem rot is the main disease of rapeseed. Up to date, genes involved in defendingSclerotinia sclerotiorum have not been found in rapeseed and some other related plants. In order to reveal the disease resistance mechanism, we inoculatedSclerotinia sclerotiorum on the stems of resistant variety Ning RS-1 and susceptible one APL01, and compared eleven defensive related genes’ expression profiles between two varieties during the period of inoculation by using fluorescence quantitative PCR. Results showed that four genes (PGIP,Cu/ZnSOD,OXO, andGLP) were highly expressed both in Ning RS-1 and APL01, and the expression in Ning RS-1 was much higher than that in APL01. Especially,PGIP’s expression at 24 hours after inoculation (hai) withSclerotinia sclerotiorum was 170.4 times as high as that at 0 hai in Ning RS-1, while it was only 3.5 times in APL01, andPGIP’s expression in Ning RS-1 was 1299.4 times as high as that at 24 hai in APL01. Two genes (LOX2 andPDF1.2) were expressed low both in Ning RS-1 and APL01, but with significant difference between two varieties. Five genes (FeSOD,PAL,EDS1,PR1, andEIN3) were also expressed low in Ning RS-1 and APL01, and without significant difference between two varieties. We inferred that the reason of resistance againstSclerotinia sclerotiorum in Ning RS-1 is related to the up-regulated expression ofPGIP, which prevents the PG protein in pathogen from degrading the cell wall of infected host tissues, resulting in the inhibition of incidence and spread ofsclerotinia stem rot in rapeseed.
Keyword:Sclerotinia sclerotiorum; Brassica napus; Defense gene; Differential expression Show Figures Show Figures
4 结论 PGIP、 Cu/ZnSOD、 OXO、 GLP、 LOX2、 PDF1.2等基因可能与油菜抗菌核病防卫反应相关, 推测抗病品种宁RS-1对菌核病的抗性可能是由于PGIP的上调表达, 抑制了核盘菌PG蛋白对侵染部位油菜组织细胞壁的降解, 从而抑制了油菜菌核病的发生与蔓延。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
李丽丽. 世界油菜病害研究概述. , 1994, 16(1): 79-82LiL L. The review of the world’s rapeseed disease. , 1994, 16(1): 79-82 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[2]
PurdyL H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range geographic distribution, and impact. , 1979, 69: 875-880[本文引用:1][JCR: 2.968]
[3]
RajaneL G, HenrikU S. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. , 2004, 136: 3703-3711[本文引用:1][JCR: 6.555]
[4]
CollmerA, KeenN T. The role of pectic enzymes in plant pathogenesis. , 1986, 24: 383-409[本文引用:1][JCR: 10.229]
[5]
SteffenR, FriederikeE M, DaguangC. Members of the germin-like protein family in Brassica napus are cand idates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. , 2012, 63: 5507-5519[本文引用:1][JCR: 5.242]
[6]
ZaferD B, RogerR, GeorgeG K, DwayneD H. Brassica napus polygalacturonase inhibitor protein inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants. , 2013, 59: 79-86[本文引用:1][JCR: 1.199]
[7]
LiR, RimmerR, BuchwaldtL, SharpA G. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. , 2004, 41: 735-753[本文引用:1][JCR: 3.263]
[8]
MeiJ Q, DingY J, LiuS Y, DisiJ O, LiJ, LiuL, LiuS, MckayJ, QianW. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. , 2013, 126: 549-556[本文引用:1][JCR: 3.658]
[9]
WenL, TanT L, ShuJ B, ChenY, LiuY, YangZ F, ZhangQ P, YinM Z, TaoJ, GuanC Y. Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus. , 2013, DOI: 10.1007/s10658-013-0262-z[本文引用:1][JCR: 1.61]
[10]
刘仁虎, 赵建伟, 肖勇, 孟金陵. 拟南芥cDNA芯片和油菜一拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因. , 2005, 35: 13-21LiuR H, ZhaoJ W, XiaoY, MengJ L. Identification of prior cand idate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping. , 2005, 35: 13-21 (in Chinese)[本文引用:1]
[11]
刘丹, 刘贵华, 王汉中. 油菜抗性相关基因的分离及其基因工程研究进展. , 2008, 10(3): 6-11LiuD, LiuG H, WangH Z. Isolation of resistant genes and their gene engineering research developments in rapeseed. , 2008, 10(3): 6-11 (in Chinese with English abstract)[本文引用:1]
[12]
张洁夫, 傅寿仲, 戚存扣, 浦惠明, 陈玉卿, 顾炳朝, 陈新军, 高建芹. 油菜抗菌核病材料宁RS-1的选育与利用. , 2002, 24(3): 6-9ZhangJ F, FuS Z, QiC K, PuH M, ChenY Q, GuB C, ChenX J, GaoJ Q. Breeding and utilization of Ning RS-1 resistance to Sclerotinia stem rot in rapeseed (B. napus L. ). , 2002, 24(3): 6-9 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[13]
周晓婴, 陈松, 戚存扣. 核盘菌诱导下甘蓝型油菜宁RS-1的SSH文库构建. , 2011, 33: 157-161ZhouX Y, ChenS, QiC K. Construction of SSH cDNA library from Ning RS-1 after inoculation of Sclerotinia sclerotiorum. , 2011, 33: 157-161 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[14]
GuptaA S, HeinenJ L, HoladayA S, BurkeJ J, AllenR D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. , 1993, 90: 1629-1633[本文引用:2][JCR: 9.737]
[15]
BreusegemF V, SlootenL, StassartJ M, MoensT, BottermanJ, VanMontaqu M, InzéD. Over production of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. , 1999, 40: 515-523[本文引用:1][JCR: 4.134]
[16]
RamputhA I, ArnasonJ T, CassL. Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. , 2002, 162: 431-440[本文引用:1][JCR: 2.922]
[17]
DunwellJ M. Microbial relatives of the seed storage proteins of high plants: conservation of structure and diversification of function during evolution of the cupin superfamily. , 2000, 64: 153-179[本文引用:1]
[18]
张宽朝, 金青, 蔡永萍, 林毅. 苯丙氨酸解氨酶与其在重要次生代谢产物调控中的作用研究进展. , 2008, 24(12): 59-62ZhangK C, JinQ, CaiY P, LinY. Research progress of PAL and its control function of important secondav metabolltes. , 2008, 24(12): 59-62 (in Chinese with English abstract)[本文引用:1]
[19]
HahnM G, BucheliP, CervoneF. The roles of cell wall constituents in plant pathogen interactions. , 1989, 3: 131-181[本文引用:1][JCR: 4.307]
[20]
BrodersenP, PetersenM, BjornN H, ZhuS, NewmanM A, ShokatK M, RietzS, ParkerJ, MundyJ. Arabidopsis MAP kinase 4 regulates salicylic acid and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. , 2006, 47: 532-546[本文引用:1][JCR: 6.582]
XuL M, HuangJ Y, LiuX Q, QinR, LiuS Y. Cloning of Brassica napus EIN3 gene and its expression induced by Sclerotinia sclerotiorum. , 2009, 10(2): 33-36[本文引用:1][JCR: 0.796]
[24]
PenninckxI A, ThommaB P, BuchalaA, MétrauxJ P, BroekaertW F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. , 1998, 10: 2103-2113[本文引用:1][JCR: 9.251]
[25]
ZhaoJ, MengJ. Detection of loci controlling seed glucosinalate content and their association with Sclerotinia resistance in Brassica napus. , 2003, 122: 19-23[本文引用:1][JCR: 1.175]
[26]
王心宇, 杨恩东, 戚存扣, 陈松, 张洁夫, 杨清. 油菜cDNA表达文库构建及核盘菌致病因子互作蛋白的筛选与鉴定. , 2008, 34: 192-197WangX Y, YangE D, QiC K, ChenS, ZhangJ F, YangQ. Construction of cDNA expression library of oilseed rape and screening and identification of interaction partner of PG, a virulence factor from Sclerotinia sclerotiorum. , 2008, 34: 192-197 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[27]
张洁夫, 傅寿仲, 戚存扣, 浦惠明, 伍晓明. 甘蓝型油菜无花瓣近等基因系的选育研究初报. , 2002, 24(2): 15-21ZhangJ F, FuS Z, QiC K, PuH M, WuX M. Preliminary report of breeding for near-isogenic lines of apetalous in rapeseed (B. napus L. ). , 2002, 24(2): 15-21 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[28]
马田田. 甘蓝型油菜抗菌核病QTL定位及相关基因表达分析. , 2012MaT T. Mapping of QTLs Associated with Disease Resistance to Sclerotinia sclerotiorum in Brassica napus and Expression Analysis of Resistance Related Gene. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)[本文引用:1]
[29]
齐绍武, 官春云, 刘春林. 甘蓝型油菜品系一些酶的活性与抗菌核病的关系. , 2004, 30: 270-273QiS W, GuanC Y, LiuC L. Relationship between some enzyme activity and resistance to Sclerotinia sclerotiorum of rapeseed cultivars. , 2004, 30: 270-273 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[30]
杨鸯鸯, 李云, 丁勇, 徐春雷, 张成桂, 刘英, 甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达. , 2009, 35: 71-78YangY Y, LiY, DingY, XuC L, ZhangC G, LiuY, GanL. Cloning of Cu/Zn-Superoxide dismutase of Brassica napus and its induced expression by Sclerotinia sclerotiorum. , 2009, 35: 71-78 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[31]
郭泽建, 李德葆. 活性氧与植物抗病性. , 2000, 42: 881-891GuoZ J, LiD B. Active oxygen species in plant disease resistance. , 2000, 42: 881-891 (in Chinese with English abstract)[本文引用:1][JCR: 0.599]
[32]
CarterC, ThornburgR W. Germin-like protein: structure, phyolo- geny and functin. , 1999, 42: 97-108[本文引用:1][JCR: 0.99]
[33]
曾永三, 王振中. 苯丙氨酸解氨酶在植物抗病反应中的作用. , 1999, 12(3): 56-65ZengY S, WangZ Z. Role of phenylalanine ammonia-lyase in plant disease resistance. , 1999, 12(3): 56-65 (in Chinese with English abstract)[本文引用:1]
[34]
FavaronF, CastiglioniC, DilennaP. Inhibition of some rot fungi polygalacturonases by Allium cepa L. and Allium porrum L. extracts. , 1993, 139: 201-206[本文引用:1][JCR: 2.968]
[35]
AyaA, JürgenE, HenrikU, Stotz. Interaction between polygalacturonase-inhibiting protein and jasmonic acid during defense activation in tomato against Botryis cinerea. , 2010, 128: 423-428[本文引用:1][JCR: 1.61]
[36]
周晓婴, 陈松, 戚存扣. 核盘菌多聚半乳糖醛酸酶基因克隆及诱饵蛋白表达载体构建. , 2010, 26(4): 25-28ZhouX Y, ChenS, QiC K. Cloning of PG from Sclerotinia sclerotiorum and construction of a bait plasmid. , 2010, 26(4): 25-28 (in Chinese with English abstract)[本文引用:1]
[37]
CornéM J, AntonioL R, SjoerdV D, VanW S. Networking by small-molecule hormones in plant immunity. , 2009, 5: 308-316[本文引用:2][JCR: 12.948]
[38]
任秋红, 黄军艳, 毛晗, 田保明, 刘胜毅. 甘蓝型油菜LOX2基因在MeJA、BTH和核盘菌诱导下的表达. , 2010, 7(1): 22-25RenQ H, HuangJ Y, MaoH, TianB M, LiuS Y. Brassica napus LOX2 gene expression induced by methyl jasmonate (MeJA), benzothiadiazole (BTH), and Sclerotinia sclerotiorum. , 2010, 7(1): 22-25 (in Chinese with English abstract)[本文引用:1]
[39]
WiermerM, FeysB J, ParkerJ E. Plant immunity: the EDS1 regulatory node. , 2005, 8: 383-389[本文引用:1][JCR: 8.455]
[40]
姜伟丽. 油菜抗菌核病品种的筛选和抗性机理分析. , 2008JiangW L. The screening and resistant mechanism on Sclerotinia sclerotiorum tolerant on rapeseed varieties. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2008 (in Chinese with English abstract)[本文引用:1]
[41]
MohamedE O, KamalB. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. , 2007, 175: 131-139[本文引用:1][JCR: 6.736]