删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双剪连接件及双耳连接耳片疲劳寿命估算的逐次累计求和算法*

本站小编 Free考研考试/2021-12-25

机械连接件(包括螺栓、铆钉和销钉连接件)具有易于拆卸、维修和替换的优点,广泛地应用于飞机结构,例如机身和机翼的蒙皮、翼肋和翼梁等[1-2],然而,机械连接件的紧固孔周围存在应力集中和难以避免的加工缺陷,极易造成飞机结构件发生过早的疲劳失效,因此,机械连接件的疲劳和裂纹扩展性能受到广泛关注,并得到大量研究。研究表明,螺栓预紧力[1-4]、过盈配合[4-7]、冷扩孔[7-9]、钻孔工艺[10]和连接形式[11]等因素对机械连接件的疲劳和裂纹扩展性能产生重要影响。为预测机械连接件的疲劳寿命,前人先后提出了基于应力集中系数的名义应力方法[12-17]和考虑了局部塑性影响的局部应力-应变方法[18-19],但是,此2种方法均无法考虑初始缺陷对于疲劳寿命的影响。事实上,机械连接件的初始缺陷(如材料夹杂和加工划痕等)往往难以避免,因此,前人提出了基于断裂力学和等效初始缺陷尺寸的损伤容限方法[20-24]。长期以来,疲劳方法和损伤容限方法互为补充,一直是结构寿命分析与设计的重要手段。
随着计算机技术和有限元计算的发展,人们越来越多地将疲劳理论、断裂力学、有限元分析和计算机相结合,发展复杂结构(包括连接件等)的疲劳损伤全过程的模拟技术(即虚拟疲劳试验技术)[25-28],在得到足够的试验结果验证后,以期代替实物试验,提高结构设计与验证的效率,节省成本。为此,本文首先在双剪连接件及双耳连接耳片疲劳试验的基础上,通过扫描电子显微镜(SEM)分析,研究了其破坏模式和机理,并判读了疲劳裂纹形成与扩展寿命;然后,根据名义应力法和线弹性断裂力学法,发展了复杂连接件疲劳裂纹形成与扩展寿命估算的逐次累计求和算法;最后,运用本文提出的寿命估算算法估算了双剪连接件的疲劳裂纹形成寿命、双剪连接件和双耳连接耳片的疲劳裂纹扩展寿命,估算结果与断口判读结果吻合良好。研究结果对典型连接件结构的疲劳寿命分析与设计提供了有益参考。
1 连接件疲劳寿命估算算法 1.1 连接件疲劳裂纹形成寿命的算法 根据疲劳知识可知[29-30],应力严重系数是制约复杂连接件疲劳寿命的关键因素,其表达式为
(1)

式中:L为应力严重系数;α为孔的表面状态系数;β为紧固件和连接板间的填充系数;σref为危险截面对应的名义应力;F为旁路载荷;ΔF为紧固件传递载荷;Kta为旁路应力引起的应力集中系数;Ktb为挤压应力引起的应力集中系数;W为板宽;t为板厚;d为紧固孔直径;φ为挤压应力分布系数。
由于疲劳强度总是随着应力严重系数的增大而降低,应力严重程度对复杂连接件疲劳强度的影响系数可写为[31]
(2)

式中:A1A2A3为材料常数。
考虑应力严重系数的影响,复杂连接件疲劳强度(或疲劳极限)变为
(3)

式中:S0为光滑试样的疲劳极限。
工程上,通常采用S-N曲线表征材料恒幅载荷下的疲劳性能,且三参数幂函数S-N曲线的使用最为广泛,复杂连接件的三参数幂函数S-N曲线表达式为
(4)

式中:Smax, R0为应力比R0下的最大名义应力;N为疲劳寿命;Aγ为材料常数,由疲劳试验数据拟合获得。
将式(3)代入式(4),得到指定应力比R0下复杂连接件的三参数疲劳性能S-N-L曲面模型:
(5)

为描述任意应力比R下的疲劳性能,利用Goodman等寿命方程[29],对式(5)进行修正,获得任意应力比R的疲劳性能S-N-L曲面模型:
(6)

式中:Sa为名义应力幅值;Sm为名义应力均值;σb为材料强度极限。
根据名义应力法和式(6),可估算谱载作用下复杂连接件疲劳寿命,即
(7)

式中:ni为载荷谱一周期内应力水平(Sai, Smi)对应的循环数;M为载荷谱一周期内的应力水平个数。
需要强调的是,利用ABAQUS等商用软件,在复杂连接件有限元建模过程中,已考虑了紧固孔填充、螺钉挤压、螺栓预紧力和摩擦等因素的影响,因此,在复杂连接件的应力集中系数Kt的计算结果基础上,仅需再考虑表面状态效应。
1.2 连接件疲劳裂纹扩展寿命的算法 根据线弹性断裂力学理论[32]可知,混合裂纹扩展的裂纹前缘的张开型(Ⅰ型)、滑开型(Ⅱ型)和撕开型(Ⅲ)应力强度因子为
(8)

式中:KKK分别为Ⅰ、Ⅱ和Ⅲ型应力强度因子;uvw分别为裂纹前缘附近点局部直角坐标系下xyz方向的位移;r为裂纹前缘附近点局部极坐标系下极轴方向的坐标;G为材料的剪切模量;κ为与泊松比μ相关的系数,平面应力状态下,κ=(3-μ)/(1+μ),平面应变状态下,κ=3-4μ
从式(8)可以看出,只要能够获取裂纹尖端附近的位移场,就可获取裂纹尖端的应力强度因子。基于最大能量释放率准则[33],裂纹扩展角度θ可由式(9)计算:
(9)

式中:KC为材料的断裂韧度。
材料裂纹扩展速率性能常用四参数Forman模型表征:
(10)

式中:
(11)

其中:
(12)

(13)

(14)

(15)

(16)

式中:Cm1~m5为材料参数;ΔK为应力强度因子变程;ΔKth为裂纹扩展门槛值;fop为疲劳裂纹张开函数;Smax为最大名义应力;α0为约束因子,对于平面应力状态,α0=1,对于平面应变状态,α0=3;σ0为流动应力;σs为材料的屈服极限。
对于混合扩展模式,需综合考虑KKK对裂纹扩展速率的影响,引入等效应力强度因子[34]
(17)

由式(10)和式(17),可得第i个循环载荷作用后的裂纹长度ai
(18)

图 1给出了三维裂纹扩展角度与长度关系示意图。利用有限元软件,在裂纹前缘上布置节点,施加疲劳循环载荷,各节点在其法平面内扩展。由式(8)、式(9)和式(18),分别计算裂尖各节点的应力强度因子、扩展角度θ和长度Δa,并拟合得到载荷循环作用后的当前裂纹前缘的位置和形状,重复上述过程,直至裂纹扩展至临界裂纹长度,此时的载荷循环次数即为连接件的裂纹扩展寿命。
图 1 三维裂纹扩展角度与长度示意图 Fig. 1 Schematic of angle and length for 3D crack growth
图选项




2 疲劳试验 疲劳试验件共有2类:①双剪连接件,由盖板、芯板和螺栓构成;②双耳连接耳片,由耳片和销棒构成,2个耳片上均预制了电火花切口,试验中将销棒无衬套地插入耳片孔内,并通过销棒对耳片施加垂直于切口平面的疲劳载荷。2类连接件的形状和尺寸分别如图 2所示,各部位的材料及力学性能如表 1所示[35],其中,E为材料弹性模量。
图 2 双剪连接件和双耳连接耳片形状和尺寸 Fig. 2 Geometry and dimensions of double-lap joints and double-lug joints
图选项




表 1 材料力学性能[35] Table 1 Mechanical properties of materials [35]
部件 材料 E/GPa μ σs/MPa σb/MPa
盖板、芯板 2324-T39铝合金 72.4 0.33 417 532
耳片 2024-T351铝合金 73.1 0.33 324 442
螺栓、销棒 45号钢 200 0.30 375 680


表选项






按照ASTM E468—90试验方法[36],在MTS-880伺服液压疲劳试验机上进行疲劳试验,试验环境为大气室温,加载波形为正弦波,加载频率f=10 Hz,双剪连接件的加载方向沿试验件长度方向,双耳连接耳片沿图 2(b)中外力P方向。2类连接件疲劳试验结果如表 2所示。
表 2 疲劳试验结果 Table 2 Results of fatigue tests
连接件疲劳载荷疲劳寿命/
cycle
应力比 载荷峰值
双剪连接件 0.06 190 MPa 429 550
双耳连接耳片 0.1 60 973 N 45 000


表选项






通过试验发现,双剪连接件疲劳断口通过芯板螺栓孔(见图 3(a)),断口SEM照片(见图 3(b))表明,断面上共有5个裂纹:裂纹A~E,其中裂纹A~D萌生于芯板的搭接面,裂纹A与裂纹B位于螺栓孔同侧,沿板厚方向相向扩展,裂纹C与裂纹D位于螺栓孔的另一侧,同样沿板厚方向相向扩展,裂纹E萌生于孔壁与搭接面的交角处,沿板材厚度和宽度方向同时扩展。裂纹A~E的长度分别为4、2.5、2.5、2.5和1 mm,可见,裂纹A面积最大,扩展最为充分,为主裂纹。主裂纹疲劳源不在螺栓孔边,这说明螺栓预紧力减轻了孔边的应力集中,使得主裂纹萌生位置偏离了螺栓孔,但在疲劳载荷的作用下,疲劳裂纹因扩展而不断靠近,甚至穿透螺栓孔边,直至断裂。
图 3 双剪连接件的疲劳失效 Fig. 3 Fatigue failure of double-lap joint
图选项




双耳连接耳片的疲劳断口为通过切口A的剖面(见图 4(a)),断口SEM照片(见图 4(b))表明,裂纹萌生于切口A的根部,并在切口所在平面,沿耳片宽度和厚度方向同时扩展,裂纹长度约为17.85 mm,断面平坦,疲劳扩展区约占整个断面面积的90%。
图 4 双耳连接耳片的疲劳失效 Fig. 4 Fatigue failure of double-lug joint
图选项




3 断口裂纹长度的SEM判读 为了理解双剪连接件和双耳连接耳片的疲劳失效模式和机理,对2类连接件的断口进行SEM分析(如图 5所示)。双剪连接件的疲劳源呈点源(见图 5(a));裂纹扩展区域发现细密的疲劳条带(见图 5(b)),由于裂纹前缘存在较强的应力集中,部分裂纹表面被撕裂,形成沿条带分布的二次裂纹,二次裂纹可以释放裂纹前缘的应变能,从而降低主裂纹在扩展平面上的扩展速率;裂纹扩展后期,断口上出现等轴韧窝形貌(见图 5(c)),说明此时双剪连接件发生了正应力导致的瞬断。双耳连接耳片的疲劳源位于切口根部,呈线源(见图 5(d));裂纹扩展区同样发现细密的疲劳条带(见图 5(e)),由于裂纹扩展速率较快,材料发生相对滑移,疲劳条带旁边出现孔洞;裂纹扩展后期,断口上也出现等轴韧窝形貌(见图 5(f)),与双剪连接件韧窝形貌相比,其韧窝大而浅,并在底部发现第二相颗粒,此时双耳连接耳片上的裂纹进入快速扩展阶段。
图 5 断口SEM照片 Fig. 5 SEM photographs of fracture
图选项




在疲劳载荷作用下,结构每承受一次应力循环,断口上就会留下一条疲劳条带,该疲劳条带是该次载荷循环作用时裂纹前缘的位置,疲劳条带数量与载荷循环次数相等[37],因此,测量并统计断口上的疲劳条带数目,即可反推出裂纹的扩展寿命。
由于疲劳源附近往往无法清晰地观察到疲劳条带的分布情况,在进行断口定量反推时,以疲劳源为起点,沿着裂纹扩展方向进行观察,以稳态扩展区寻找到的第1条可识别的疲劳条带作为裂纹扩展的起点。断口上的疲劳条带数量繁多且分布密集,铝合金中部分元素会导致局部脆性增强,从而造成部分疲劳条带缺失,所以,断口很难呈现大面积规则的疲劳条带。为此,本文采用分段反推方法,即在稳态扩展区选取n条清晰的疲劳条带(标号1~n),将裂纹扩展过程分为n-1个阶段,其中将裂纹扩展起点作为第1条疲劳条带,将裂纹扩展终点作为第n条疲劳条带,值得注意的是,分段反推方法仅要求各阶段的起点和终点处的疲劳条带清晰即可。
为预测第k-1至第k条疲劳条带间的裂纹扩展寿命,在第k-1和第k条疲劳条带上分别选取3个位置(如图 6(b)中①②③),利用高倍扫描电子显微镜分别测量3个位置处与前后疲劳条带的间距Sk(1)Sk(2),取3个位置处的Sk(1)Sk(2)的平均值作为该疲劳条带处的间距Sk,并将(Sk+Sk-1)/2作为第k-1至第k条疲劳条带阶段的平均扩展速率,则第k-1至第k条疲劳条带阶段的裂纹扩展寿命为
(19)

图 6 断口判读方法 Fig. 6 Fracture interpretation method
图选项




式中:ak-1ak分别为第k-1条和第k条疲劳条带对应的裂纹长度。
裂纹长度达到ak时所经历的载荷循环次数为
(20)

2类连接件的断口判读结果如表 3表 4图 7所示。从表 3可以看出,双剪连接件的裂纹扩展寿命判读值为13 760 cycles,由总疲劳寿命可反推出裂纹形成寿命判读值为415 790 cycles。从表 4可以看出,双耳连接耳片的裂纹扩展寿命判读值为33 283 cycles,则裂纹形成寿命判读值为11 717 cycles。从图 7可以看出,双剪连接件的裂纹始终以较稳定的速率进行扩展,而双耳连接耳片的裂纹在扩展中前期速率较为稳定,但在扩展后期,裂纹扩展速率迅速增加,进入不稳定的快速扩展阶段。
表 3 双剪连接件的裂纹扩展寿命 Table 3 Crack growth life of double-lap joints
序号k 裂纹长度判读值ak/mm 疲劳条带间距判读值Sk/μm 扩展寿命判读值Nk/
cycle
扩展寿命预测值/
cycle
相对偏差/
%
1 0.05 0.15 0 0 0
2 0.53 0.17 3 000 4 382 46.1
3 1 0.26 5 186 6 683 28.9
4 1.02 0.24 5 266 6 767 28.5
5 1.43 0.35 6 656 7 937 19.2
6 1.98 0.3 8 348 8 987 7.6
7 2.61 0.36 10 257 9 671 5.7
8 3 0.35 11 356 10 077 11.3
9 3.83 0.42 13 512 10 600 21.5
10 4.01 1.03 13 760 10 641 22.7


表选项






表 4 双耳连接耳片的裂纹扩展寿命 Table 4 Crack growth life of double-lug joints
序号k 裂纹长度判读值ak/mm 疲劳条带间距判读值Sk/μm 扩展寿命判读值Nk/
cycle
扩展寿命预测值/
cycle
相对偏差/
%
1 0.01 0.36 0 0 0
2 0.37 0.4 948 950 0.21
3 2.44 0.3 6 826 7 451 9.2
4 3.98 0.45 10 936 10 802 1.2
5 5.5 0.44 14 381 13 951 3.0
6 6.98 0.32 18 250 17 148 6.0
7 8.62 0.34 23 220 20 748 10.6
8 11.2 0.75 27 966 24 695 11.7
9 13.39 1.4 30 002 26 045 13.2
10 15.41 1.15 31 589 26 195 17.1
11 17.85 1.74 33 283 26 242 21.2


表选项






图 7 裂纹长度与裂纹扩展寿命 Fig. 7 Crack length versus crack growth life
图选项




4 连接件寿命估算 4.1 连接件裂纹形成寿命 利用ABAQUS有限元软件,建立双剪连接件的有限元模型(如图 8(a)所示),采用线性六面体C3D8R单元模拟双剪连接件,生成了63 939个单元。在2个盖板的夹持端施加固支约束,在芯板的夹持端施加纵向均布拉伸载荷,在2个螺栓的上下表面对称地施加0.1 mm的轴向压缩位移以模拟螺栓预紧力对板的压缩作用。
图 8 双剪连接件有限元模型 Fig. 8 Finite element model for double-lap joints
图选项




双剪连接件各部件的材料性能按表 1进行设置,各部件间的接触属性设置为法向“硬接触”和切向库伦摩擦接触,摩擦系数设置为0.5。计算得到双剪连接件应力分布如图 8(b)所示,计算得到应力集中系数Kt=1.49。
根据抗疲劳设计手册[30],选取表面状态系数α=1.2,计算得到应力严重系数L=1.79。
根据2324-T39的疲劳性能数据[38],获得疲劳性能S-N-L曲面:
(21)

将双剪连接件的应力严重系数及疲劳载荷循环(见表 2)代入式(21),预测出双剪连接件的疲劳裂纹形成寿命为371 270 cycles,与断口判读结果(415 790 cycles)的相对偏差为10.7%,具有可接受精度。
4.2 连接件裂纹扩展寿命 利用ABAQUS有限元软件,建立含初始裂纹的双剪连接件和双耳连接耳片的有限元模型(见图 9图 10),根据断口疲劳裂纹判读结果,双剪连接件断面上存在5条裂纹,其中A裂纹是主裂纹,B、C、D和E裂纹虽然形成,但未同时扩展或扩展非常缓慢,因此,B、C、D和E裂纹对结构刚度和应力分配无明显影响,对主裂纹扩展行为的影响也很小,可忽略不计。在双剪连接件和双耳连接耳片上插入初始裂纹长度分别为0.05 mm和0.01 mm的半圆形裂纹,裂纹尖端均选用1/4节点楔形奇异单元来划分网格(见图 9(a)图 10(a))。采用线性六面体C3D8R单元模拟双剪连接件,生成64 847个单元,边界条件及接触设置与前面相同。采用线性六面体C3D8R单元和二次四面体C3D10单元分别模拟双耳连接的耳环和底座,分别生成10 724和6 055个单元;双耳连接耳片的上、下和侧表面均施加固支约束,销棒加载端面上施加均布拉伸载荷,拉伸载荷方向与图 2(b)P方向一致,部件间的接触属性设置为法向“硬接触”和切向库伦摩擦接触,摩擦系数设置为0.3。
图 9 双剪连接件裂纹扩展模拟 Fig. 9 Crack growth simulation of double-lap joints
图选项




图 10 双耳连接耳片裂纹扩展模拟 Fig. 10 Crack growth simulation of double-lug joints
图选项




首先,对有限元模型逐个施加疲劳载荷循环,根据式(8)和式(17),计算裂纹前缘应力强度因子;然后,根据连接件材料裂纹扩展速率的四参数Forman模型[37](式(22)和式(23)),计算裂纹扩展长度;最后,利用式(9),计算裂纹扩展角度,从而获取下一个载荷循环对应的裂纹前缘形状,不断重复上述过程直至裂纹长度达到临界裂纹长度,输出裂纹扩展过程模拟结果如图 7图 9(b)图 9(c)图 10(b)图 10(c)表 3表 4所示。
(22)

(23)

表 3表 4图 7可以看出,双剪连接件和双耳连接耳片的疲劳裂纹扩展寿命估算值分别为10 641 cycles和26 242 cycles,预测值与断口判读值的最大相对误差分别为46.1%和21.2%,具备可接受精度。从图 9(b)图 9(c)图 10(b)图 10(c)可以看出,本文算法能有效模拟2类连接件的裂纹扩展过程,模拟的裂纹前缘形状与断面裂纹形貌吻合良好。
5 结论 1) 基于应力严重系数法和线弹性断裂力学法,建立了复杂连接件疲劳性能S-N-L曲面,发展了估算复杂连接件疲劳裂纹形成与扩展寿命的逐次累计求和算法。
2) 利用SEM分析技术,研究了双剪连接件和双耳连接耳片的疲劳失效机理,测量并统计了断口上的疲劳条带数目,反推出2类连接件的疲劳裂纹形成及扩展寿命。
3) 利用逐次累计求和算法,估算了双剪连接件的疲劳裂纹形成寿命、双剪连接件和双耳连接耳片的裂纹扩展寿命,估算结果与断口判读结果吻合良好。

参考文献
[1] ESMAEILI F, CHAKHERLOU T N, ZEHSAZ M. Investigation of bolt clamping force on the fatigue life of double lap simple bolted and hybrid (bolted/bonded) joints via experimental and numerical analysis[J]. Engineering Failure Analysis, 2014, 45(8): 406-420.
[2] ESMAEILI F, CHAKHERLOU T N. Investigation on the effect of tigthening torque on the stress distribution in double lap simple bolted and hybrid (bolted-bonded) joints[J]. Journal of Solid Mechanics, 2015, 7(3): 268-280.
[3] JIMéNEZ-PE?A C, TALEMI R H, ROSSI B, et al. Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension[J]. Tribology International, 2016, 108(4): 128-140.
[4] ABAZADEH B, CHAKHERLOU T N, ALDERLIESTEN R C. Effect of interference fitting and/or bolt clamping on the fatigue behavior of Al alloy 2024-T3 double shear lap joints in different cyclic load ranges[J]. International Journal of Mechanical Sciences, 2013, 72(7): 2-12.
[5] CHAKHERLOU T N, MIRZAJANZADEH M, ABAZADEH B, et al. An investigation about interference fit effect on improving fatigue life of a holed single plate in joints[J]. European Journal of Mechanics A/Solids, 2010, 29(4): 675-682. DOI:10.1016/j.euromechsol.2009.12.009
[6] CHAKHERLOU T N, MIRZAJANZADEH M, VOGWELL J. Experimental and numerical investigations into the effect of an interference fit on fatigue life of double shear lap joints[J]. Engineering Failure Analysis, 2009, 16(7): 2066-2080. DOI:10.1016/j.engfailanal.2009.01.009
[7] CHAKHERLOU T N, TAGHIZADEH H, AGHDAM A B. Experimental and numerical comparison of cold expansion and interference fit methods in improving fatigue life of holed plate in double shear lap joints[J]. Aerospace Science and Technology, 2013, 29(1): 351-362. DOI:10.1016/j.ast.2013.04.006
[8] GOPALAKRISHNA H D, MURTHY H N N, KRISHNA M, et al. Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy-An experimental study[J]. Engineering Failure Analysis, 2010, 17(2): 361-368. DOI:10.1016/j.engfailanal.2009.08.002
[9] CHAKHERLOU T N, VOGWELL J. The effect of cold expansion on improving the fatigue life of fastener holes[J]. Engineering Failure Analysis, 2003, 10(1): 13-24. DOI:10.1016/S1350-6307(02)00028-6
[10] RALPH W C, JOHNSON W S, MAKEEV A, et al. Fatigue performance of production-quality aircraft fastener holes[J]. International Journal of Fatigue, 2007, 29(7): 1319-1327. DOI:10.1016/j.ijfatigue.2006.10.016
[11] MUCHA J, WITKOWSKI W. The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test[J]. Thin-Walled Structures, 2013, 66(5): 39-49.
[12] SKORUPA M, MACHNIEWICZ T, SKORUPA A, et al. Fatigue life predictions for riveted lap joints[J]. International Journal of Fatigue, 2017, 94(1): 41-57.
[13] LIU J H, ZHANG R L, WEI Y B, et al. A new method for estimating fatigue life of notched specimen[J]. Theoretical and Applied Fracture Mechanics, 2018, 93(1): 137-143.
[14] 田本鉴, 熊峻江. 非对称疲劳载荷作用铆钉连接件疲劳寿命估算[J]. 北京航空航天大学学报, 2013, 39(12): 1649-1653.
TIAN B J, XIONG J J. Fatigue life estimation of riveted joints subjected to asymmetrical loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1649-1653. (in Chinese)
[15] 张天宇, 何宇廷, 陈涛, 等. 一种多钉铆接连接件的疲劳寿命分析方法[J]. 北京航空航天大学学报, 2018, 44(9): 1933-1940.
ZHANG T Y, HE Y T, CHEN T, et al. A fatigue life analysis method for multiple riveted joint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1933-1940. (in Chinese)
[16] HUANG W, WANG T J, GARBATOV Y, et al. DFR based fatigue reliability assessment of riveted lap joint accounting for correlations[J]. International Journal of Fatigue, 2013, 47(2): 106-114.
[17] TIAN B J, XIONG J J, LIU J Z. A new approach for evaluating fatigue lives of multi-fastener mechanical joints based on a nominal stress concept and minimal datasets[J]. International Journal of Fatigue, 2015, 80(11): 257-265.
[18] DE JESUS A M P, DA SILVA A L L, CORREIA J A F O. Fatigue of riveted and bolted joints made of puddle iron-A numerical approach[J]. Journal of Constructional Steel Research, 2014, 102(1): 164-177.
[19] SANCHES R F, DE JESUS A M P, CORREIA J A F O, et al. A probabilistic fatigue approach for riveted joints using Monte Carlo simulation[J]. Journal of Constructional Steel Research, 2015, 110(7): 149-162.
[20] MIKKOLA E, MURAKAMI Y, MARQUIS G. Equivalent crack approach for fatigue life assessment of welded joints[J]. Engineering Fracture Mechanics, 2015, 149: 144-155. DOI:10.1016/j.engfracmech.2015.10.022
[21] CORREIA J A F O, BLASóN S, DE JESUS A M P, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model[J]. Engineering Failure Analysis, 2016, 69(11): 15-28.
[22] MIKKOLA E, MURAKAMI Y, MARQUIS G. Fatigue life assessment of welded joints by the equivalent crack length method[J]. Procedia Materials Science, 2014, 3: 1822-1827. DOI:10.1016/j.mspro.2014.06.294
[23] WU Y Z, XU Y W, GUO X, et al. Fatigue life prediction based on equivalent initial flaw size for Al-Li 2297 under spectrum loading[J]. International Journal of Fatigue, 2017, 103(14): 39-47.
[24] 张丽娜, 吴学仁, 刘建中. 疲劳裂纹扩展中单峰过载引起的残余应力强度因子计算[J]. 机械强度, 2011, 33(3): 432-437.
ZHANG L N, WU X R, LIU J Z. Computation of residual stress intensity factors induced by single overload during fatigue crack growth[J]. Journal of Mechanical Strength, 2011, 33(3): 432-437. (in Chinese)
[25] 王延忠, 田志敏, 侯良威, 等. 航空重载面齿轮三维裂纹分析与疲劳裂纹扩展寿命预测[J]. 北京航空航天大学学报, 2014, 40(2): 148-153.
WANG Y Z, TIAN Z M, HOU L W, et al. Three-dimensional crack analysis and fatigue life prediction of aero heavy-load face gear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 148-153. (in Chinese)
[26] KUMAR S A, BHATTACHARYA A, BABU N C M. Fatigue crack growth life prediction around cold expanded hole using finite element method[J]. Procedia Materials Science, 2014, 5: 316-325. DOI:10.1016/j.mspro.2014.07.273
[27] BERGARA A, DORADO J I, MEIZOSO A M, et al. Fatigue crack propagation in complex stress fields:Experimental and numerical simulations using the extended finite element method (XFEM)[J]. International Journal of Fatigue, 2017, 103(14): 112-121.
[28] NASRI K, ZENASNI M. Fatigue crack growth simulation in coated materials using X-FEM[J]. Comptes Rendus Mecanique, 2017, 345(4): 271-280. DOI:10.1016/j.crme.2017.02.005
[29] 熊峻江. 飞行器结构疲劳与寿命设计[M]. 北京: 北京航空航天大学出版社, 2004.
XIONG J J. Fatigue life design for aircraft structure[M]. Beijing: Beihang University Press, 2004. (in Chinese)
[30] 赵少汴. 抗疲劳设计手册[M]. 北京: 机械工业出版社, 2015.
ZHAO S B. Fatigue design manual[M]. Beijing: China Machine Press, 2015. (in Chinese)
[31] FU Y, XIONG J J, SHENOI R A. Practical models for characterizing corrosion fatigue behaviours of metallic materials and for evaluating calendar lives of aircraft structural components[J]. Proceedings of Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2017, 231: 207-222. DOI:10.1177/0954406216637633
[32] HERTZBERG R W. Deformation and fracture mechanics of engineering materials[M]. Hoboken: Wiley Jones and Sons, 1996.
[33] CHANG J, XU J Q, MUTOH Y. A general mixed-mode brittle fracture criterion for cracked materials[J]. Engineering Fracture Mechanics, 2006, 73(9): 1249-1263. DOI:10.1016/j.engfracmech.2005.12.011
[34] AYGVL M, AL-EMRANI M, BARSOUM Z, et al. An investigation of distortion-induced fatigue cracking under variable amplitude loading using 3D crack propagation analysis[J]. Engineering Failure Analysis, 2014, 45(10): 151-163.
[35] Federal Aviation Administration. Metallic materials properties development and standardization[M]. Columbia: U.S.Department of Transportation, 2006: 3-94.
[36] ASTM.Standard practice for: Presentation of constant amplitude fatigue test results for metallic materials: ASTM E468-90[S].West Conshohocken: ASTM International, 2004: 1-6.
[37] 刘新灵, 张铮, 陶春虎.疲劳断口定量分析[M].北京: 国防工业出版社, 2010.
LIU X L, ZHANG Z, TAO C H.Fatigue fractography quantitative analysis[J].Beijing: National Defense Industry Press, 2010(in Chinese).
[38] 郑晓玲, 刘文珽, 李令芳, 等. 民机结构耐久性与损伤容限设计手册[M]. 北京: 航空工业出版社, 2003.
ZHENG X L, LIU W T, LI L F, et al. Design manual for durability and damage tolerance of civil aircraft structures[M]. Beijing: Aviation Industry Press, 2003. (in Chinese)


相关话题/材料 计算 裂纹 结构 机械

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • CCD器件用机械泵驱动两相流体回路仿真与试验*
    电荷耦合元件(Charge-CoupledDevice,CCD)具有自扫描、感受波谱范围宽、畸变小、体积小、质量轻、系统噪声低、功耗小、寿命长、可靠性高等一系列优点[1],是目前航天光学遥感器应用最为普遍的探测器件之一。CCD的性能受温度影响很大,其热电子噪声随温度呈指数递增,如果温度波动较大,热噪 ...
    本站小编 Free考研考试 2021-12-25
  • 基于硬脂酸复合相变材料的被动热沉性能*
    随着电子设备集成度的不断提高,其温控问题越来越突出,美国空军研究结果表明,因为电子设备过热而引起的系统故障问题约占总故障的55%[1]。因此,为保障电子设备的运行可靠性、性能稳定性和使用寿命,需要研究更加高效的电子设备温控技术。相比于主动温控技术[2],基于相变储能材料的被动式温控装置具有系统结构简 ...
    本站小编 Free考研考试 2021-12-25
  • 进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响*
    固体冲压发动机具有结构简单、比冲高、质量轻等优点[1],是现代火箭技术中应用非常广泛的动力装置。在固体冲压发动机的研究过程中,补燃室综合性能的研究对提高固体冲压发动机性能具有重要意义。为研究补燃室综合性能,1989年,Cherng等[2]利用SIMPLE算法研究了不同进气道角度和进气道位置对补燃室内 ...
    本站小编 Free考研考试 2021-12-25
  • 金属材料微裂纹取向与超声波和频非线性效应*
    金属材料的长期服役过程中,在环境和载荷的作用下,微裂纹会逐渐萌生、扩展长大形成宏观裂纹,一旦裂纹扩展到临界尺寸,即会发生破坏,产生严重的后果[1]。研究表明,金属材料早期微裂纹阶段占整个裂纹寿命的90%[2],因此,在金属材料微裂纹早期阶段开展相关的检测工作,对于避免重大安全生产事故、保障工程材料的 ...
    本站小编 Free考研考试 2021-12-25
  • 动力涡轮转子结构系统力学特性稳健设计方法*
    涡轴/涡桨发动机动力涡轮转子是具有大长径比、多支点支承、质量/刚度分布不均匀的高速转子结构系统,其连接结构力学特性和支承刚度在工作过程中的分散性直接影响转子系统动力特性的稳健性。由于动力涡轮转子工作转速一般位于弯曲振型临界转速之上,故称为高速柔性转子系统[1]。连接结构力学特性随载荷环境改变,由此引 ...
    本站小编 Free考研考试 2021-12-25
  • 基于代理模型的制导火箭炮发射诸元计算方法*
    作为陆军主要远程压制武器,远程精确制导火箭炮是炮兵对敌远程精确打击的主要力量。在现代及未来战争中,提高火箭炮自身的生存能力至关重要,其中缩短发射准备时间以提高其快速反应能力是最重要的方向之一。因此,在保证一定精度的前提下,研究发射诸元快速计算问题显得尤为重要。在制导火箭炮发射前必须对其发射诸元进行快 ...
    本站小编 Free考研考试 2021-12-25
  • 带衬套沉头螺栓复合材料/金属接头拉伸性能*
    复合材料由于其比强度高、比刚度大、寿命长、耐腐蚀性好等诸多优点[1],在现代工业中已然得到广泛应用。随着复合材料设计与工艺的不断进步,在航空航天领域,复合材料从最早的只能用于非承力部件,逐步到次承力部件,目前已经用于主承力结构。在飞行器实际结构中,考虑到制造工艺及结构维护等因素,会设计各种工艺分离面 ...
    本站小编 Free考研考试 2021-12-25
  • 航空发动机转子结构布局优化设计方法*
    目前,中国航空燃气涡轮发动机的研制正处于从测绘仿制到自主研发的过渡发展阶段,由于对结构设计的基础理论研究不足,在设计上大多依赖于传统的工程设计经验。而对于一台高性能、高可靠性的航空发动机来讲,单纯依靠长期积累的设计经验或测绘仿制不能满足其先进性的需求。所谓布局优化设计,即是结构构型的合理设计,只有合 ...
    本站小编 Free考研考试 2021-12-25
  • 一种考虑过滤的短纤维增强复合材料RVE建模方法*
    短纤维增强复合材料具有比强度高、比刚度高和可设计性强等特点,在航空航天[1-2]、建筑[3]、汽车[4]、医疗[5]、船舶[6]等领域应用广泛。其弹性模量的预测是重要的研究内容,主要的预测方法有均匀化法[7]、代表性体积单元(RepresentativeVolumeElement,RVE)法[8-1 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进的动态Kriging模型的结构可靠度算法*
    当现有的可靠性分析方法应用于复杂的工程结构时,往往面临巨大的挑战[1],功能函数通常是高度非线性甚至是隐式的,而且需要借助有限元分析(FiniteElementAnalysis,FEA)进行评估,计算量大,计算时间长[2-3]。一阶可靠度算法(FirstOrderReliabilityMethodo ...
    本站小编 Free考研考试 2021-12-25