删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于矩阵分解的空间系绳系统不完全反馈控制*

本站小编 Free考研考试/2021-12-25

随着人类航天事业的不断发展,越来越多的航天器被不断发射到太空,因此近地空间已逐渐变成十分拥挤的场所。与此同时,由于复杂的太空扰动导致航天器轨道高度发生不同程度的变化,进而引起不同航天器之间的碰撞,产生大量空间碎片。因此,安全、高效地捕获空间碎片对于航天任务的安全完成具有重要意义。利用空间系绳系统(STS)进行捕获是一种新型捕获方式,具有安全性、位置容错性、经济性等优点。
利用空间系绳系统执行碎片在轨捕获任务时一般可以分为捕获前系绳的展开、交会捕获以及捕获后系统回稳、回收、拖拽等不同阶段。捕获前系绳展开到平衡位置、交会捕获以及捕获后系统回稳是后续回收、拖拽任务的前提。然而,由于太空环境复杂,展开结束后可能存在一定的长度及摆角误差;而捕获完成后由于目标物与捕获机构构成统一整体,质量突变、捕获位置不理想等问题,系统不可避免地会出现摆动。因此,需要对上述情况进行控制使其回到稳定状态即平衡位置。
目前,国内外****对系绳平衡位置附近的稳定性问题进行了大量研究。Pasca[1]研究了系绳卫星系统在状态保持阶段的运动,并提出了利用子星推力来控制系绳的面内振荡。Williams等[2]提出了通过电动力和偏置控制来控制系绳的振荡。Mankala和Agrawal[3]设计了一套边界控制器将系统控制到了径向相对平衡的位置。Larsen和Blanke[4]设计了一套非线性控制器,并利用电动力系绳注入阻尼的方法将系绳卫星系统控制到一个渐进稳定的平衡位置。余本嵩等[5]通过雅可比矩阵对处于平衡位置的绳系卫星的稳定性进行了研究,提出了通过在子星一端安装喷气力控制装置的含约束条件的PID控制律[6]。庞兆君[7]针对位于圆轨道上和椭圆轨道上的系绳卫星的混沌运动进行了分析,并通过Melnikov方法给出圆轨道下含阻尼系统的混沌域,采用延迟反馈控制,将欠驱动系绳卫星系统的混沌运动稳定到周期运动。
而对于系绳系统,捕获后系统稳定控制问题则更为复杂。孙亮等[8-9]针对空间系绳系统面内转移过程中的系统的摆振特性及稳定性进行了研究,指出面内轨道转移过程中面内角会以固定的频率绕平衡位置往返摆动,并且这种摆动受轨道高度、系绳长度、推力加速度等影响,提出了连续常值推力系绳系统的轨道转移策略和基于系绳张力系统的摆振抑制策略。张帆和黄攀峰[10]针对非合作目标抓捕后保持阶段的振动特性参数辨识方法,提出了非合作目标被系绳系统抓捕后处于保持阶段的姿态运动振动特性参数辨识方法。赵国伟等[11]在考虑捕获平台与目标物的姿态运动基础上,提出了留位和阻尼控制相结合的张力复合控制方法。张宇靖和钟睿[12]以模型预测控制方法为基础设计了稳定系绳摆动的非线性模型预测控制算法。
上述文献在设计控制器时,多采用施加外力矩的方式(如电动力、喷管推力等),或通过输入外部能量来控制系统的面内运动。施加外力矩的方式能够快速抑制面内运动,且精度较高,这对于要求定绳长的高精度任务场合尤其重要[13]。然而,电动力系绳在地磁场中由于洛伦兹力的作用会使得系统轨道能量减少,轨道高度降低,对于状态保持阶段并不适用;喷管能够有效产生交会捕获时目标逼近、跟踪所需要的摆动,但要不断消耗燃料,然而系统在轨时间较长,若从始至终一直通过喷管来控制子星的运动需要消耗大量燃料,十分不经济。
对于本文所研究的展开后状态保持以及捕获结束后回稳的过程,由于轨道周期较长,对任务的时间要求并不强烈,则通过张力控制使系统缓慢回到稳态也是可行的。例如,王班等[14]针对捕获完成后提出了一种在最大摆角处收紧系绳、平衡位置处释放系绳的面内摆动抑制控制方法,但仅在面内角速率大于零的条件下有效。李超等[15]针对圆轨道下系绳系统的状态保持阶段提出了基于标准系绳法的稳定控制方法。但上述方法对系绳张力机构提出了系绳面内、面外角姿态可测、绳长可测和系绳张力可控可测等要求。
系绳系统测量姿态角的主要方式是GPS干涉法[16],对姿态测量系统提出了较高要求。通过张力对系统进行控制时,一旦角度和角速率反馈失效,将会对系统造成严重影响。例如1988年发射的ECHO-7、2003年发射的DTUsat-1、2006年发射的CUTE-1.7以及2007年发射的YES-2卫星都出现了传感器及控制器故障,对任务造成了不同程度的影响[17-18]。因此,设计在角度和角速率反馈失效时仍能够使用的控制器,对于系绳展开后的面内保持以及捕获后系统的回稳具有重要意义。此外,面内运动反馈被证明对系统稳定性没有本质影响[19],因此在仅反馈长度和速率信号的情况下设计控制律同样可行。
针对状态反馈不完全问题,目前较为常用的方法为线性二次调节器(LQR)+降维观测器方法,除此之外,矩阵分解也为控制律的设计提供了一种良好的选择,其思想为:针对线性系统,通过配置反馈矩阵使其闭环特征方程配置到指定位置,从而使特征方程与具有较好性能的指定标准特征多项式具有相同的系数。本文在设计控制律时,结合标准系数法将系统特征多项式设计为确定形式,在矩阵分解基础上利用相容性原理解决由不完全状态反馈所带来的相容性问题,从而将控制器参数计算出来,此时由于系统特征多项式确定,故其闭环特性也将比较理想,控制效果可预期。
基于上述考虑,本文针对系绳展开后状态保持阶段以及捕获后系统的回稳任务,设计仅反馈长度和速率信号的张力控制律,从而对系统的绳长、面内角误差以及面内摆动进行有效控制。在设计不完全状态反馈的控制律时,本文基于矩阵分解方法,结合标准系数法通过简单的代数运算计算出控制器参数,控制律结构简单,无需复杂的参数调整。
1 动力学模型 考虑系绳系统为有质量弹性杆模型。有以下4点假设:①捕获平台(母星)和捕获前/后的捕获机构(子星)通过弹性系绳连接,系统质心在未受扰动的开普勒圆轨道上运行。②将母星和子星视为质点,且母星质量远大于子星,即系统质心位于母星上。系绳未释放前卷轴位于母星内。③系绳视为质量分布均匀的弹性杆,只考虑沿其自身的纵向振动,不计入系绳的扭转刚性及各向异性等。④所有影响系统的外部作用力中,只考虑重力的影响,忽略太阳光压、大气阻力、日月引力等扰动的影响。
定义地心轨道坐标系和绳系坐标系如图 1所示。其中,地心轨道坐标系OXYZ为惯性坐标系,OXY平面与轨道平面一致,OX轴指向轨道近地点(对于圆轨道,沿地心指向轨道升交点方向),OZ轴与轨道平面正交并沿航天器的动量矩方向,OY轴按右手坐标系原则确定。轨道运动坐标系CXoYoZo与系统质心C固联,CXo轴沿航天器矢径方向,CZo轴和OZ轴平行。坐标系CXoYoZo相对于坐标系OXYZ以轨道角速率Ω旋转。绳系坐标系坐标原点C位于航天器质心处,CXt轴沿着卫星拉紧绳系的反方向,CYt轴和CZt轴的位置由相对于坐标系CXoYoZo的面内角θ和面外角φ确定。空间系绳系统所在轨道与目标物所在轨道在同一平面内,惯性系下目标物的真近点角为η
图 1 系绳系统捕获过程示意图 Fig. 1 Schematic of capture process with tether system
图选项




空间系绳系统的状态可以用5个广义坐标描述:系绳系统质心距地心距离rc、系统质心的真近点角?、面内角θ、面外角φ和系绳弹性应变ε。根据拉格朗日方程,推导出有质量系绳的空间系绳系统的微分方程为
(1)

式中:“·”表示对时间t求导;mAmB分别为母星和子星的质量,mA?mBmt=ρl0为系绳质量,ρ为系绳线密度,l0为系绳原长,系绳当前长度为l=l0(1+ε);T为系绳张力;μ为地球引力常量;?1?2?3?4为质量项。

2 线性化处理及开环稳定性分析 由于系绳密度较小(约为10-4 kg/m),且假设展开后所出现的非标称行为及捕获后所出现的摆动等扰动情况下,系绳均在平衡位置附近摆动,故系绳长度基本不变,出于控制律设计方便,此时忽略系绳质量、弹性伸长量变化带来的影响。即式(1)中的质量系数?2?4≈1,l0=l, 。此外,系统质心沿圆轨道运动,其轨道角速率为。基于上述假设,对系统模型在平衡位置附近做线性化处理。
引入无量纲时间τ=Ωt,则。将式(1)无量纲化得
(2)

式中:“′”表示对无量纲时间τ=Ωt求导。
对于系绳系统,稳定的平衡位置沿轨道的径向方向,即θ1, 2=0, π。将方程式(2)在平衡点附近线性化,并引入无量纲长度,忽略高阶小量可得
(3)

式中:ε0=l/lc为系绳无量纲长度,lc为系绳展开的最终长度即标称长度。
因此,平衡点附近系统的状态空间方程为
(4)

式中:

经计算可知,线性化系统式(4)可观可控。
由式(3)可得系统面内角运动的特征方程为
(5)

该特征方程的解为
(6)

显然,当处于平衡位置(l′=0, l=const)时,特征根位于虚轴上,即系统临界稳定。此外,由式(2)可以看出,如果调节系绳长度l和速率,通过的微分方程中的一项将可以控制面内角θ和面内角速率两个状态量,即当仅存在长度或角度信号时也可以控制角度或长度状态量。因此,通过调节系绳长度和速率可以实现空间系绳系统的稳态控制,而绳长和速率调节可以通过释放/回卷机构或者张力控制来实现[14-15]。故本文采用的张力控制方法能够实现面内摆动的抑制,从而使系统回稳。
3 捕获后面内扰动情况分析 系统展开完成后被控处于平衡位置,而当捕获机构与目标物即将交会对接时,将通过喷管使系绳摆动从而实现捕获机构对目标物的跟踪。文献[20]指出,理想捕获位置(近地点或远地点)交会时,空间碎片与捕获机构的速度大小和方向完全一致。
然而,出于捕获安全性考虑,通常设计理想捕获时刻附近数十秒的捕获窗口,此时空间碎片和捕获机构仍在理想捕获位置附近运动。捕获机构速度矢量已不再沿OY轴互相平行,故此时执行捕获任务会对系统的相对运动产生扰动,因此被称为非理想捕获。本文欲针对捕获后系绳的面内摆动进行控制,故首先需对非理想捕获所带来的扰动情况进行计算分析。
由于本文假设捕获前后捕获平台的轨道运动不受空间碎片和系绳质量的影响,即其质心变化忽略不计。此外,忽略空间碎片对系绳纵向振荡所产生的扰动,仅考虑系绳的面内摆动。且为了简化捕获过程,将其视为恒定速率运动[13],利用刚体动量守恒原理对非理想位置进行扰动分析,并计算捕获后捕获机构与空间碎片构成的统一整体绕地垂线运动的角速率。
捕获平台在惯性坐标系下的矢径和速度分别为
(7)

目标物的轨道运动可表示为
(8)

式中:vA=Ω(R+H), RH分别为地球半径和捕获平台轨道高度;, ea分别为目标物轨道偏心率和半长轴;η为当前时刻目标物的真近点角。
惯性坐标系下目标物相对捕获平台的矢径和运动速度为
(9)

则绳系坐标系下目标物相对捕获平台的相对矢径和相对速度为
(10)

式中:Π2(θ)=
系统动量守恒过程如下:
(11)

式中:mpIp分别为目标物的质量和角动量;IbeforeIafter分别为捕获前、后系统的角动量;Jbefore=mBlc2Jafter=(mB+mp)lc2分别为捕获前、后捕获机构转动惯量;ωbeforeωafter分别为捕获前、后系绳摆动角速度;Jt=mtlc2/3为系绳的转动惯量。
定义捕获机构能够允许的距离误差Rcap
(12)

式中:rB为捕获机构(子星)矢径。
此外,由式(1)可得,系绳完全展开后其面内摆动方程为
(13)

积分可得面内自由摆动最大摆角应为
(14)

可通过式(7)~式(14)计算并分析捕获过程刚体碰撞所带来的系绳面内运动情况,进而确定控制器所要克服的扰动大小。
4 控制律设计 对于线性系统式(4),其开环传递函数可表示为
(15)

式中:F(s)=det(sIA),In阶单位矩阵;M(s)=[m11+…+m1nsn-1, …, mr1+…+mrn·sn-1]Tn为矩阵A的维数。
系统闭环传递函数为
(16)

式中:P为不完全不状态反馈下反馈矩阵,PRrr为反馈状态量的个数。
系统闭环特征方程为
(17)

因此,通过配置反馈矩阵,理论上可将系统闭环特征方程的根配置在任意位置上,全状态反馈下一般配置方法参见文献[15]。
由闭环特征多项式可得
(18)

比较方程两端相同阶次s的系数,可得
(19)

式中:fj分别为多项式H(s)和F(s)的系数,且f, jRn×1。此外,

对于式(19),可列出具有r个未知数的n个方程。对完全反馈的系统(r=n),式(19)有唯一解;对不完全反馈的系统(r < n),除满足期望特征方程外,还需要满足相容性条件,即由r个线性无关的方程组所构成的子系统的解必须同时符合剩余nr个方程。
将式(18)中M(s)分解为
(20)

式中:g(s)=[1, s, …, sn-1]T
将式(19)代入式(18),可得
(21)

式中:,与矩阵AB有关。
从矩阵CT中取r个线性无关的行组成r阶矩阵CBT,并从单位矩阵I中选取相应行组成r×n阶矩阵IBCHTIH则由各自矩阵的剩余部分组成。则式(21)可分解为
(22)

(23)

解方程式(22)并将结果代入式(23)中,得到相容性条件为
(24)

式中:α=S(LT)-1β=αjSR(nrn,仅与矩阵C有关,βR(nr)×1。对于单输入对象来说,矩阵CB可逆,即矩阵C中元素不全为0。
达到相容性条件后,计算矩阵P使特征根达到事先选定的值,得到期望配置的特征根系数。以期望的特征方程(包含未知量ω的系数矩阵)代入相容性方程,解出ω,从而确定系数矩阵。以空间系绳系统为例选取四阶标准型:
(25)

此处ω的值可以根据相容性条件αf=αj得出,这样既确定了ω的范围,又满足了相容性条件的要求。通过相容性条件解出ω的值以后,一般得到不同的值,当ω的取值范围为0.5~2.5时,系统的性能最理想。
如果式(24)中向量f的约束能够满足,那么反馈矩阵P
(26)

式中:K=(CBT)-1IB
计算系统的反馈矩阵P时,本文的期望特征方程以ITAE标准型为参考,当状态方程为四阶时,可得期望的特征根系数表示为[15]f=[ω4??2.7ω3??3.4ω2??2.1ω]T
代入相容性条件可得ω为±1.527、±3.19 i和0。选择ω在0.5~2.5附近的值(ω=1.527)代入到ITAE的标准传递系数中,得到期望的系数值。
由式(26)计算可得反馈矩阵为:P=[4.812 3.207 0 0]T,将其代入式(17)得
(27)

值得注意的是,二次项与标准型系数有一定出入。当设计的系统各阶次系数与标准型完全一致时,控制效果最好,但高阶情况下很难全部成立,因此应使各系数尽可能相近。在设计计算时,当(Z′/Z)≥0.8同时成立时就可满足要求,Z′和Z分别为设计系统和标准型的各阶系数。因此,设计的反馈矩阵P满足相容性要求,且满足ITAE标准型设计要求,反馈系数矩阵设计成功。
5 仿真分析 由于空间碎片所处的高度越高,在地球轨道中存在的时间越长。高度大于800 km的空间碎片需要几百年的时间方可回到地球空间销毁,且大部分空间碎片凝聚在800~850 km的高度上,尤其是倾角在71°~74°和81°~83°的低轨道和太阳同步轨道上。
本文假设质量mA=1 600 kg的母星(捕获平台)处于高度H=900 km的太阳同步圆轨道上,利用lc=30 km的系绳和质量m2=50 kg的捕获机构对处于偏心率为e=0.01的椭圆轨道上质量mp=100 kg的目标物进行捕获。地球半径R=6 371 km,地球引力常量μ=398 600 km3/s3。系绳选用迪尼玛材料,线密度ρ=0.198 kg/km。捕获前需将系绳展开至标称长度,理想状态下,系绳向地垂线方向展开完成后,系统处于平衡位置,无量纲坐标下对应的状态量为ε0=1,ε0=0,θ=0,θ′=0。
此外,为检验本文设计控制律是否具有预期的控制效果,首先在线性化模型中进行验证,同时设计了LQR+降维观测器作为对比。其中,LQR控制器的Q矩阵选取为[2, 2, 1, 1],降维观测器的特征根为[-0.5, -3.3]。仿真均采用无量纲形式。
5.1 系绳展开后非标称行为抑制 由于太空环境复杂,在大气阻力、太阳光压等扰动作用下,系绳的最终展开状态可能并不理想。如YES-2任务由于控制机构出现了非致命故障,使得其第一阶段的展开出现了12 m的长度误差(约为标称长度的0.4%)和10°的面内角误差[21]。因此本文在考虑系统存在系绳长度、面内角存在初始偏差值的情况下,检验稳态保持控制系统的有效性。假设展开后存在面内角约为10°(0.174 5 rad)、绳长为100 m的初始误差,此时不加控制系统会始终处于幅值为10°的周期摆动运动。无量纲下仿真初始条件为:ε0=0.996 7,ε0=0,θ=0.174 6,θ′=0。
在利用矩阵分解方法设计控制参数时,所使用的系统状态方程是在空间系绳系统有质量弹性杆模型归一化处理、平衡点附近线性化处理的基础上得到的。因此,所得到的控制参数是在线性化模型条件下忽略了系统各部分质量变化。为进一步验证矩阵分解方法所设计的控制器的有效性,采用实际的非线性模型式(1)来验证线性化条件下得出的控制参数的控制效果。
利用传统的LQR+降维观测器对线性化系统进行控制,同时分别在线性化模型式(4)和非线性模型式(1)下对比,检验所设计的控制律的有效性,仿真结果如图 2所示,相应的控制力(系绳张力)变化曲线如图 3所示。
图 2 系绳展开后各状态量受控变化曲线 Fig. 2 Changing curves of state variables under control after tether deployment
图选项




图 3 系绳展开后系绳张力变化曲线 Fig. 3 Variation curves of tether tension after tether deployment
图选项




图 2所示,利用矩阵分解方法设计的控制器对线性化模型和非线性模型进行控制,其仿真曲线基本重合。非线性模型下,4个状态量的超调量略高于线性化模型,这是由于线性化过程中忽略了系绳长度、质量以及面内摆动运动等因素的影响,因此,后续针对捕获后面内摆动问题采用非线性模型式(1)进行仿真验证。此外,由图 3可以看出,3种情况下系绳张力变化均相对平稳,张力保持在十几牛的大小附近(远小于极限张力T*=σ*S=54×109×2×10-7=10 800 N)。
线性化模型下,根据矩阵分解方法设计的控制器与LQR+降维观测器对比可知, 2种方法都能够有效控制系统的长度和角度误差,且调节时间相差不大,系统的4个状态量在5个无量纲时间(约0.8个轨道周期)时间前后全部回到了稳态值。然而,利用LQR+降维观测器方法时,绳长、速率、面内角及面内角速率的超调量均远高于基于矩阵分解方法设计的控制器,即基于矩阵分解方法的模态控制器不仅能有效抑制系统展开后所出现的非标称行为,使系统回到平衡位置,同时,与常用的LQR+降维观测器相比,其平稳性和静差消除都更为理想,能够满足空间系绳系统稳态保持控制的要求。
5.2 捕获后系绳面内摆动抑制 以轨道高度H=900 km、捕获窗口30 s为例,捕获后瞬间系统以5.786 5×10-4 rad/s的角速率摆动,则由式(14)计算可知,系绳不受控下最大摆角θmax可达到0.33 rad(约18.9°),故利用本文设计的控制律针对捕获任务完成后系统出现的面内摆动,对其进行控制使其回到稳定状态即平衡位置。根据式(11)计算非理想情况下捕获后面内角速率,根据计算结果结合式(14)计算捕获后面内最大摆角,并将其转换为无量纲形式,可得仿真初始条件为:ε=1,ε′=0,θ=8.68×10-3θ′=5.786 5×10-4/Ω。与各模型、控制律相对应的控制力变化曲线如图 4所示,仿真结果如图 5所示。
图 4 捕获后系绳张力变化曲线 Fig. 4 Variation curves of tether tension after capture
图选项




图 5 捕获后各状态量受控变化曲线 Fig. 5 Changing curves of state variables under control after capture
图选项




图 5可以看出,线性化系统初始时刻存在面内摆动时,基于矩阵分解的模态控制和LQR+降维观测器作用下速率、面内角和面内角速率的变化趋势大致相近,LQR+降维观测器对面内角和面内角速率的控制略优于基于矩阵分解设计的控制器,但绳长和速率的变化差异较大。基于矩阵分解模态控制器下绳长、速率最终全部回到稳态值1和0(无静差),系统回复到了平衡位置,快速性和平稳性较好;而LQR+降维观测器对绳长和速率控制的平稳性较差,控制效果并不理想。绳长超调量达到了21.59%,是基于矩阵分解控制方法的2倍;峰值速率为0.44(13.442 m/s),对系绳机构的要求更为严苛。
基于矩阵分解方法设计的控制器对线性化模型和非线性模型的控制曲线基本重合。故基于线性化模型设计的模态控制律在实际非线性模型下也具有标称的控制效果,其对非线性模型的控制效果与对线性化模型控制的效果基本相同,绳长、速率、面内角及面内角速率最终都在有限时间内回到平衡位置附近,过渡过程相对平稳,没有对控制机构提出额外的要求,从而表明利用矩阵分解方法设计的控制律对于捕获后系统的面内摆动抑制是有效的。
由式(11)可知,捕获完成后系绳的面内摆动角速率的大小直接或间接受到目标物的质量以及捕获瞬间二者的距离(即绳长)的影响;与此同时,系统各部分质量变化会直接改变非线性模型中参数?1?2?3?4。因此,需计算目标物、系绳质量不同时捕获后系统的角速率,并在新的初始条件下进行仿真对比,进一步检验本文设计的控制器对系统的控制效果。
质量mA=1 600 kg捕获平台利用lc=30 km的系绳对不同质量的目标物进行捕获时,利用式(11)计算捕获前后角速率以及捕获窗口结束时系绳的面内角的大小,并将捕获后角速率化为无量纲形式作为仿真初始条件进行仿真,系统各状态量变化曲线如图 6所示。尽管仿真初始条件根据目标物质量变化而有所改变,但系统的过渡过程平稳,4个状态量出现波峰和波谷的时间相差无几,且长度、速率、面内角的超调量均随目标物质量的增加而微弱增加。
图 6 捕获不同目标物后各状态量受控变化曲线 Fig. 6 Changing curves of state variables under control with different captured debris
图选项




质量mA=1 600 kg捕获平台利用不同的长度系绳对质量mp=100 kg的目标物进行捕获时,系统各状态量变化曲线如图 7所示。与捕获平台和目标物的质量变化相比,绳长变化对仿真初始条件的影响更为明显,而对系统控制效果的影响也更为剧烈。系统状态量的波峰/波谷都会随系绳长度增加而更高/低,即在一定程度上系绳长度越长,系统平稳性越好。
图 7 不同长度系绳完成捕获后各状态量受控变化曲线 Fig. 7 Changing curves of state variables under control with different length of tether after capture
图选项




综合上述分析可以看出,相比LQR控制器繁琐的调参工作,以及降维观测器设计中观测器矩阵特征值复杂的选定工作,矩阵分解方法根据较为理想的参考传递函数,直接设计出了控制效果较为理想的控制器,省去了相应的调参工作。本文设计的控制律能够有效解决捕获后系绳面内摆动的抑制任务,过渡过程平稳,其状态量出现波峰波谷的时间相近,大小变化不大,控制效果良好,任务适应性强。因此,基于矩阵分解方法设计的控制器能够有效地将空间系绳系统控制在期望的稳定状态,同时设计简便,没有繁琐的调参环节。
6 结论 1) 基于矩阵分解设计的控制律能够有效控制系绳展开非标称行为及捕获后面内扰动,超调量较小,过渡过程平稳且调节时间相对较短;此外,该控制律在模型质量参数存在大范围不确定性的情况下同样具有较好的控制效果和抗干扰能力。
2) 本文设计的控制律相比于常见的LQR+降维观测器方法,具有更好的控制效果,且将闭合特征方程设计为标准系数法中指定形式,其控制效果可预期。此外,设计过程简单,避免了繁琐的调参工作。
3) 仿真表明,本文设计的控制律对于目标物以及系绳质量(长度)大范围变化的系统同样适用,故可以适用于一大类大质量捕获平台捕获小质量目标物的系绳系统状态保持和摆动抑制的问题,为利用空间系绳系统进行捕获的回稳控制提供了有用参考。

参考文献
[1] PASCA M. Nonlinear control of tethered satellite system oscillations[J]. Nonlinear Analysis, 1997, 30(6): 3867-3878. DOI:10.1016/S0362-546X(97)00114-4
[2] WILLIAMS P, WATANABE T, BLANKSBY C, et al. Libration control of flexible tethers using electromagnetic forces and movable attachment[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 882-897. DOI:10.2514/1.1895
[3] MANKALA K K, AGRAWAL S K.A boundary controller based on linear infinite dimensional system for station keeping of a tethered satellite system[C]//American Control Conference.Piscataway, NJ: IEEE Press, 2006: 9036818.
[4] LARSEN M B, BLANKE M.Control by damping injection of electrodynamic tether system in an inclined orbit[C]//American Control Conference.Piscataway, NJ: IEEE Press, 2009: 4824-4829.
[5] YU B S, JIN D, WEN H. Nonlinear dynamics of flexible tethered satellite system subject to space environment[J]. Applied Mathematics and Mechanics(English Edition), 2016, 37(4): 485-500. DOI:10.1007/s10483-016-2049-9
[6] 余本嵩.复杂太空环境下柔性绳系卫星动力学与控制[D].南京: 南京航空航天大学, 2011: 91-94.
YU B S.Dynamics and control of flexible tethered satellite in complex space environment[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 91-94(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1012033381.htm
[7] 庞兆君.绳系卫星状态保持阶段运动分析与控制[D].南京: 南京航空航天大学, 2015: 39-42.
PANG Z J.Motions and their controls of tethered satellite systems during station-keeping[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-42(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D820835
[8] SUN L, ZHAO G W, HUANG H. Stability and control of tethered satellite with chemical propulsion in orbital plane[J]. Nonlinear Dynamics, 2013, 74(4): 1113-1131. DOI:10.1007/s11071-013-1028-z
[9] 孙亮, 赵国伟, 黄海, 等. 面内轨道转移过程中的绳系系统摆振特性研究[J]. 航空学报, 2012, 33(7): 1245-1254.
SUN L, ZHAO G W, HUANG H, et al. Analysis of librational and vibrational characteristics for tethered systems during orbital transfer in plan[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1245-1254. (in Chinese)
[10] 张帆, 黄攀峰. 空间绳系机器人抓捕非合作目标的质量特性参数辨识[J]. 宇航学报, 2015, 36(6): 630-639.
ZHANG F, HUANG P F. Inertia parameter estimation for an noncooperative target captured by a space tethered system[J]. Journal of Astronautics, 2015, 36(6): 630-639. DOI:10.3873/j.issn.1000-1328.2015.06.003 (in Chinese)
[11] 赵国伟, 张兴民, 唐斌, 等. 空间绳系拖拽系统摆动特性与平稳控制[J]. 北京航空航天大学学报, 2016, 42(4): 694-702.
ZHAO G W, ZHANG X M, TANG B, et al. Properties of pendulum motion of tether tugging system and its stable control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 694-702. (in Chinese)
[12] 张宇靖, 钟睿. 基于非线性模型预测的绳系系统系绳摆振控制[J]. 北京航空航天大学学报, 2018, 44(10): 2200-2207.
ZHANG Y J, ZHONG R. Tether swing control of tether system based on nonlinear model prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2200-2207. (in Chinese)
[13] LORENZINI E C. Error-tolerant technique for catching a spacecraft with a spinning tether[J]. Journal of Vibration and Control, 2004, 10(10): 1473-1491.
[14] 王班, 易琳, 郭吉丰, 等. 一种基于摆长反复小幅改变的面内摆动抑制方法[J]. 四川大学学报(工程科学版), 2014, 46(6): 191-197.
WANG B, YI L, GUO J F, et al. An in-plane swing damping method based on pendulum length changed repeatedly[J]. Journal of Sichuan University(Engineering Science Edition), 2014, 46(6): 191-197. (in Chinese)
[15] 李超, 王长青, 李爱军, 等. 基于标准系数法的空间系绳系统状态保持稳定控制[J]. 航天控制, 2014, 32(2): 73-77.
LI C, WANG C Q, LI A J, et al. Stability control for station-keeping phase of space tether system based on standard coefficient method[J]. Aerospace Control, 2014, 32(2): 73-77. DOI:10.3969/j.issn.1006-3242.2014.02.013 (in Chinese)
[16] BANGHAM M E, LORENZINI E C, VESTAL L.Tether transportation system study: NASA/TP-1998-206959[R].Washington, D.C.: NASA, 1998.
[17] CHEN Y, HUANG R, REN X, et al. History of the tether concept and tether missions:A review[J]. ISRN Astronomy and Astrophysics, 2013, 2013: 502973.
[18] ASHIDA H, FUJIHASHI K, INAGAWA S, et al. Design of Tokyo tech nano-satellite CUTE-1.7+APD Ⅱ and its operation[J]. Acta Astronautica, 2010, 66(9): 1412-1424.
[19] WEN H, ZHU Z H, JIN D, et al. Space tether deployment control with explicit tension constraint and saturation function[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 916-921. DOI:10.2514/1.G001356
[20] WILLIAMS P, BLANKSBY C, TRIVAILO P, et al. In-plane payload capture using tethers[J]. Acta Astronautica, 2005, 57(10): 772-787. DOI:10.1016/j.actaastro.2005.03.069
[21] KRUIJFF M, VAN DER HEIDE E, OCKELS W, et al.First mission results of the YES2 tethered SpaceMail experiment[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Reston: AIAA, 2008: 7385.


相关话题/系统 控制 设计 质量 空间

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于状态量扩维的旋转式捷联惯导系统精对准方法*
    旋转式捷联惯导系统(StrapdownInertialNavigationSystem,SINS)在不使用外部信息的前提下,利用转位机构带动惯性测量单元(InertialMeasurementUnit,IMU)以一定的旋转方案转动,将陀螺和加速度计的常值误差调制成周期性变化的形式,从而实现惯性器件误 ...
    本站小编 Free考研考试 2021-12-25
  • 基于智能优化算法和有限元法的多线圈均匀磁场优化设计*
    磁场模拟装置在地磁导航等航空航天工程中具有重要的应用价值[1-3]。理想的磁场模拟装置应能够在足够大的空间内产生高均匀度的磁场,因此,磁场均匀性是衡量磁场模拟装置性能的关键技术指标之一。近年来,随着磁场模拟装置的应用领域越来越广泛,其磁场分布的均匀性得到了越来越多科研工作者的重视[4-6]。文献[4 ...
    本站小编 Free考研考试 2021-12-25
  • 基于平流层风场预测的浮空器轨迹控制*
    临近空间是介于航空与航天区域之间、尚未为人类所开发利用的大气层,其独特的资源优势成为了人们关注的焦点[1]。临近空间底部的平流层具有气流稳定,空气流动相对缓慢的特点,特别是在一定时间内,平流层底部存在风速较小的准零风层[2],一般指平流层高度为17~22km大气层内存在的一个上下层纬向风风向相反,上 ...
    本站小编 Free考研考试 2021-12-25
  • 基于MBSE的民用飞机功能架构设计方法*
    民机系统是一个涉及多学科,多领域的高度复杂系统[1]。传统的民机功能需求分析是基于文档管理的,由设计师人工链接设计结果与需求之间的关系,如果需求没有得到满足则需要重新返工,迭代开发时间长,成本高昂[2]。2007年,国际系统工程协会(InternationalCouncilonSystemsEngi ...
    本站小编 Free考研考试 2021-12-25
  • 高超声速飞行器预设性能反演控制方法设计*
    高超声速飞行器是指以超燃冲压发动机为动力,以马赫数5以上的速度飞行在高度为20~100km的临近空间中的一类飞行器,主要为军方执行情报收集、侦察监视、高空投送等任务[1]。因其军民两用前景广阔,在情报侦查和通信运送等方面优势独特,从而引起了世界大国广泛且高度的关注,并迅速成为近年来空天领域研究的热点 ...
    本站小编 Free考研考试 2021-12-25
  • 舰载机弹射起飞影响因素分析及侧向控制律设计*
    舰载机弹射起飞的过程虽然很短暂,但受到的力和力矩繁多,其动力学特性具有明显的非线性,所以基于传统的小扰动线性化技术已经无法满足弹射起飞过程建模和控制的需求,采用非线性的建模方式是十分必要的。在舰载机弹射起飞过程中,航母的甲板运动和侧风干扰等因素会使舰载机在离舰后出现姿态滚转和航迹偏移,不利于安全起飞 ...
    本站小编 Free考研考试 2021-12-25
  • 基于键合图模型的SHA/EMA余度系统的故障诊断*
    随着多电飞机概念的提出,功率电传作动系统开始越来越多地应用在飞机上,目前应用最广泛的两类功率电传作动器是电静液作动器(EHA)和机电作动器(EMA)。由于一些尚未解决的技术难题(如滚柱丝杠卡死)存在,功率电传作动器还不能完全取代传统的液压伺服作动器(SHA),而是通常采用与技术成熟的SHA组合成非相 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑多因素的可修系统任务可靠性分配方法*
    在设计阶段,为了满足系统可靠性顶层指标要求,需要运用合理的可靠性分配方法为每个单元分配对应的可靠性指标。对于不可修复的系统顶层指标[1-2],通常有平均失效前时间(MTTF)、失效率、可靠度等;对于可修复系统顶层指标,通常为可用度、失效率、平均故障间隔时间(MTBF)或平均故障修复时间(MTTR)。 ...
    本站小编 Free考研考试 2021-12-25
  • 动力涡轮转子结构系统力学特性稳健设计方法*
    涡轴/涡桨发动机动力涡轮转子是具有大长径比、多支点支承、质量/刚度分布不均匀的高速转子结构系统,其连接结构力学特性和支承刚度在工作过程中的分散性直接影响转子系统动力特性的稳健性。由于动力涡轮转子工作转速一般位于弯曲振型临界转速之上,故称为高速柔性转子系统[1]。连接结构力学特性随载荷环境改变,由此引 ...
    本站小编 Free考研考试 2021-12-25
  • 一种含闭环支链的新型并联机构设计与分析*
    目前,航天飞行器壳体多为复合材料加工而成的大直径薄壁筒状结构,因此在与环状金属端框的套装对接的过程中常常发生变形和翘曲,进而产生对接阻力大、工件易损坏、装配精度差等一系列问题[1-2]。目前,很多大型飞行器的套装方式为手动施力于螺旋装置进行推进,常导致工件变形、位姿调整困难、装配效率低,已经难以满足 ...
    本站小编 Free考研考试 2021-12-25