删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高超声速飞行器预设性能反演控制方法设计*

本站小编 Free考研考试/2021-12-25

高超声速飞行器是指以超燃冲压发动机为动力,以马赫数5以上的速度飞行在高度为20~100 km的临近空间中的一类飞行器,主要为军方执行情报收集、侦察监视、高空投送等任务[1]。因其军民两用前景广阔,在情报侦查和通信运送等方面优势独特,从而引起了世界大国广泛且高度的关注,并迅速成为近年来空天领域研究的热点。飞控技术是高超声速飞行的核心问题之一。高超声速飞行器具有强非线性、强耦合、模型不确定和多干扰、多约束以及大时变等特性。由于临近空间中高超声速飞行器特定的飞行速度和复杂的飞行环境,飞行控制正经历着传统飞行器所未曾遇到过的新问题,这对于控制系统的设计提出了许多相应的新要求,对其开展控制新理论、新方法和新技术研究意义重大[2-3]
从目前公开的文献资料看,大多数的研究工作是基于建立的Winged-Cone刚体模型上开展的[4-6],一般很难反映出高超声速飞行器的结构动力学特性。Bolender与Doman[7]则在以上研究的基础上,通过分别建立弹性动力学模型、气动力模型与发动机模型,最终得到了一个气动/推进/结构耦合的纵向一体化解析式系统模型。Parker等[8]则在Bolender与Doman[7]的工作基础上,通过忽略模型中的一些弱耦合关系,建立了一个面向控制的高超声速飞行器参数拟合模型。目前已有相当多的控制算法被应用于控制器的设计。经典的鲁棒控制在本质上是考虑不确定性为最坏情况时优化解的求取情况,文献[9]通过反馈线性化和极点配置的方法设计了标称控制器,通过鲁棒补偿器来抑制参数不确定和外界扰动带来的不利影响;滑模控制对模型本身的不确定与外部扰动都不敏感,具有良好的鲁棒性,文献[10]设计了一种多输入、多输出的自适应滑模控制律,确保了速度与高度跟踪误差指数收敛的滑模面,但控制输入存在高频抖振;文献[11]设计弹性自适应控制律,减弱了系统的抖振,跟踪效果较好,但控制律设计是基于刚体模型建立的且并未分析系统的弹性状态影响;反演控制能充分利用系统有用的非线性项,将非匹配不确定系统转化为匹配不确定系统,这已成为高机动飞行器控制系统设计的主流方法[12-13]。文献[14]针对飞行器弹性模型设计了一种鲁棒反演控制器,虽然对指令输入跟踪效果较好,但是由于未考虑到加入干扰观测器后使得对模型的不确定项估计变得相对平滑,在后期鲁棒性能上无法确保。
虽然对于高超声速飞行器的参考轨迹跟踪研究已有大量的较好成果,但是考虑不确定扰动下跟踪误差的瞬态性能(如超调量、跟踪误差等)研究却少之又少[15-16]。2008年,希腊****Bechlioulis和Rovithakis[15]提出了一种控制策略-预设性能控制,较好地实现了对跟踪误差瞬态性能的范围约束。预设性能控制方法的主要思路是通过设计预设性能函数对轨迹跟踪误差进行相应转化,从而保证误差能够以预期的瞬态性能收敛至预设范围内。文献[17]设计了一种预设性能的鲁棒反演控制,完成了控制任务且对未知随机扰动有较强的鲁棒性,但误差收敛速度较慢。文献[18]对于全状态的预设性能设计了一种受限指令的反演控制器,在输出和中间状态稳态分析的基础上,对全状态信号的瞬时性能进行了分析。
本文针对高超声速飞行器巡航段纵向动力学模型设计了一种新型预设性能神经反演控制方法。首先,将纵向运动模型分解为速度和高度子系统,并分别进行控制器设计,引入预设性能函数及转化误差来满足预先设定的瞬态性能和稳态精度。在设计控制器过程中引入径向基函数(RBF)神经网络对模型不确定项进行补偿和逼近,有效提高了控制精度。然后,分别对速度和高度子系统构造Lyapunov函数进行系统稳定性分析。最后,通过仿真对所设计控制器的可行性和有效性进行验证。
1 高超声速飞行器建模 1.1 高超声速飞行器纵向平面运动学方程 高超声速飞行器轨迹控制系统的任务是在保持飞行姿态稳定的前提下,通过调节燃料-空气比Φ和升降舵偏角δe在纵向平面内实现对速度参考指令和高度参考指令的有效跟踪。高超声速飞行器受力情况示意图如图 1所示,其在纵向平面内的运动模型为[7-8, 19-20]
图 1 高超声速飞行器受力示意图 Fig. 1 Force map of hypersonic flight vehicle
图选项




(1)

式中:V为飞行速度;γ为飞行航迹角;h为飞行高度;θ为俯仰角;g为重力加速度;Q为俯仰角速率;mIyy分别为飞行器的质量和俯仰转动惯量;LTDM分别为升力、推力、阻力和俯仰力矩;攻角α=θγηi为弹性状态量;ζiωi分别为第i阶弹性模态的阻尼系数和自然频率;Ni为第i阶广义弹性力;为第i阶弹性模态的耦合系数;
式(1)中LTDM的拟合式如下:
(2)

式中:q为空气动压;ρ为空气密度;Sc分别为飞行器参考气动面积和气动弦长;Φδe分别为燃料-空气比和升降舵偏角;zT为推力力矩耦合系数。式(1)和(2)中飞行器几何参数和气动参数见文献[21]。
注1??本文所采用的Parker弹性体模型相比于文献[22-23]中采用的刚体模型更能准确地模拟出飞行器的真实飞行状态。本文所采用模型的气动力拟合公式中充分考虑了弹性状态的影响,将弹性状态视为系统的不确定项处理,因此相应的控制难度加大。
由式(1)和式(2)可以看出,速度的变化主要与燃料-空气比Φ相关,而高度的变化主要与舵偏角δe相关。因此控制输入选择燃料-空气比Φ和升降舵偏角δe,输出为速度V和高度h
由式(1)和式(2)可以看出,飞行器弹性体状态通过气动力LTDM严重地同刚体状态耦合,如果抑制弹性状态的效果不明显,将会对刚体状态的控制产生较大影响。因此,控制系统的任务除了保证刚体系统稳定跟踪参考输入外,还要保证弹性状态最终是收敛的。
为便于控制律设计,通常先将高超声速飞行器的运动模型分解为速度子系统与高度子系统,再分别对其设计相应控制律。这里已将2个子系统的耦合考虑在内[14]
1.2 RBF神经网络 引入如下RBF神经网络用来逼近模型不确定项:
(3)

式中:FRξRn分别为神经网络的输出和输入;WRn为权值向量;ψ(ξ)=[ψ1(ξ), ψ2(ξ), …, ψn(ξ)]T为径向基函数。通常情况下,将ψi(ξ)选取成如下高斯基函数:
(4)

式中:ξiRn为高斯基函数中心向量;biR+为高斯基函数的宽度。
引理1[24]??给定任意连续函数F(ξ)是定义在紧集Ωξ上的实函数以及任意常数。当n足够大时,选取合适的biξi使得RBF神经网络变为
(5)

式中:表示估计误差;?ξΩξW*为最优权值向量,将W*定义为如下形式:
(6)

2 控制器设计与稳定性分析 2.1 预设性能分析 定义1??连续函数ρ(t):R+R+,若同时满足以下条件[25]:①ρ(t)是严格单调递减的正函数;②。则该连续函数可被称为预设性能函数。
基于定义1,本文选取如下预设性能函数:
(7)

式中:ρ0, ρ, lR+为待设计参数且ρ0>ρρ0为函数ρ(t)的初值,ρ为函数ρ(t)的稳态值,l为函数ρ(t)的下降速率。
可以看出,ρ(t)具有如下性质:①ρ(t)为正的单调递减函数;②ρ(0)=(ρ0ρ)+ρ=ρ0>ρ
跟踪误差e(t)应满足下述定义不等式:
(8)

式中:κλ为正参数。
则对于任意未知但有界的e(0),均有
(9)

由式(8)可以看出,ρ表示e(t)稳态值的上界,即-κρ < e(∞) < λρ,故可通过选取合适的ρ来保证e(t)具有理想的稳态精度。ρ(0)表示e(t)所允许的最大超调量。
在设计控制系统的过程中,直接对不等式约束(式(8))进行处理的难度非常大,因此可以先将不等式约束转化为等式约束再进行设计,这里定义一个误差转换函数H(ε(t)):
(10)

式中:ε(t)为转换误差。
H(ε(t))平稳递增,则有
(11)

那么H(ε(t))的逆可以写成
(12)

这里将ε(t)选取为如下形式:
(13)

对式(13)求导可得
(14)

式中:

显然,μν是有界的。
定理1??若ε(t)有界,则有-κρ(t) < e(t) < λρ(t)。
证明??当e(0)>0时,因为ε(t)有界,必存在有界正数εM使得|ε(t)|≤εM。这样,式(13)的逆变换为
(15)

由式(15)可得
(16)

也即

反之可得e(0) < 0的情况。????证毕
下文的控制器设计将基于转换误差ε(t)。定理1表明,只要ε(t)有界,误差e(t)便可被限定在式(8)所定义的预设区域内。通过为ρ(t)设计合适的参数,便可保证e(t)具有预期的瞬态性能与稳态精度。
2.2 速度控制器设计与稳定性分析 根据文献[14]中的时间刻度原理,由于速度的动态变化比高度角及角速率(γθQ)更慢,可以认为速度和高度属于长周期模态,高度角属于短周期模态,这样在设计控制器时就可以将高超声速飞行器运动模型分解为速度子系统和高度子系统。因此将式(1)中表达式改写为如下形式:
(17)

式中:为未知的非线性函数。
定义速度跟踪误差为
(18)

将式(18)求导,得到
(19)

根据式(13),速度的转换误差εV可以表示为
(20)

式中:ρV=(ρV0ρV)elVt+ρVρV0ρVlV均为正的待设计参数。
结合式(19)对式(20)求导可得
(21)

若假设μV>μV0>0,式(21)可以进一步写成
(22)

式中:为未知的非线性函数,需要用RBF来进行估计。
基于反演理论,将实际控制律Φ设计为
(23)

对于式(5)中未知的最优权值向量,定义
(24)

根据式(24)可得
(25)

式中:的估计值;cV>0、τV>0和σV>0为待设计的参数。
证明??选取如下Lyapunov函数:
(26)

式中:
对式(26)求导可得
(27)

将式(23)和式(25)代入式(27)可得
(28)

又有不等式
(29)

将不等式(29)代入式(28)可得
(30)

式中:
结合式(29)可得
(31)

显然,εV是有界的,再结合式(13)及式(18)可以保证预期的瞬态性能。?????证毕
2.3 高度控制器设计与稳定性分析 为了便于控制器设计,根据式(1)将高超声速飞行器高度子系统改写为如下形式:
(32)

式中:均为未知的非线性函数。
定义高度跟踪误差为
(33)

将式(33)求导并结合式(32),得到
(34)

根据式(13),高度的转换误差函数εh可表示为
(35)

式中:ρh=(ρh0ρh)elht+ρhρh0ρhlh均为正的待设计参数。
类似的,航迹角的转换误差函数εγ可表示为
(36)

式中:ργ=(ργ0ργ)elγt+ργργ0ργlγ均为正的待设计参数。
俯仰角的转换误差函数εθ可表示为
(37)

式中:ρθ=(ρθ0ρθ)elθt+ρθρθ0ρθlθ均为正的待设计参数。
俯仰角速率的转换误差函数εQ可表示为
(38)

式中:ρQ=(ρQ0ρQ)elQt+ρQρQ0ρQlQ均为正的待设计参数。
结合式(34)对式(35)求导可得
(39)

若假设μh>μh0>0,式(39)可以进一步写成
(40)

式中:为未知的非线性函数,需要用式(5)提到的RBF神经网络来进行估计:
(41)

其中:为估计误差。
基于反演理论,将虚拟控制律γd设计为
(42)

同时
(43)

式中:的估计值;ch>0、τh>0和σh>0为待设计的参数。
选取如下Lyapunov函数:
(44)

对式(44)求导可得
(45)

根据Yong不等式,有
(46)

又有不等式
(47)

因此
(48)

将式(42)、式(43)代入式(48)可得
(49)

定义航迹角误差为
(50)

将式(50)求导并结合式(32),得到
(51)

结合式(51)对式(36)求导可得
(52)

若假设μγ>μγ0>0,式(52)可以进一步写成
(53)

式中:为未知的非线性函数,需要用式(5)提到的RBF神经网络来进行估计:
(54)

其中:为估计误差。
基于反演理论,将虚拟控制律θd设计为
(55)

同时
(56)

式中:的估计值;cγ>0、τγ>0和σγ>0为待设计的参数。
选取如下Lyapunov函数:
(57)

对式(57)求导可得
(58)

与式(46)和式(47)类似可得
(59)

定义俯仰角误差为
(60)

将式(60)求导并结合式(32),得到
(61)

结合式(61)对式(37)求导可得
(62)

若假设μθ>μθ0>0,式(62)可以进一步写成
(63)

式中:为未知的非线性函数,需要用式(5)提到的RBF神经网络来进行估计:
(64)

其中:为估计误差。
基于反演理论,将虚拟控制律Qd设计为
(65)

同时
(66)

式中:的估计值;cθ>0、τθ>0和σθ>0为待设计的参数。
选取如下Lyapunov函数:
(67)

对式(67)求导可得
(68)

与式(46)和式(47)类似可得
(69)

定义俯仰角速率误差为
(70)

将式(70)求导并结合式(32),得到
(71)

结合式(71)对式(38)求导可得
(72)

若假设μQ>μQ0>0,式(72)可以进一步写成
(73)

式中:为未知的非线性函数,需要用式(5)提到的RBF神经网络来进行估计:
(74)

其中:为估计误差。
基于反演理论,将实际控制律δe设计为
(75)

同时
(76)

式中:的估计值;cQ>0、τQ>0和σQ>0为待设计的参数。
证明??选取如下Lyapunov函数:
(77)

对式(77)求导可得
(78)

与式(46)和式(47)类似可得
(79)

注2??RBF神经网络具有补偿和逼近系统的不确定项的能力,这样一来避免了虚拟控制量的重复求导问题。在每一步设计控制律中,通过引入神经网络权值的估计值,使得只有一个参数需要在线更新,这样简化了参数设计降低了计算量。同时考虑到RBF神经网络的估计性能是建立在紧集Ω上的,这里只能保证控制系统的局部稳定。
应用如下不等式:
(80)

将式(79)写成如下形式:
(81)

式中:
(82)

ι=min{2ciμi, τiσi},式(81)变为
(83)

则由式(83)可得
(84)

式(84)表明了L(t)是有界的,又有εi都是有界的。由于εi都是有界的,根据转化误差函数式(13),可以得到-κρ(t) < e(t) < λρ(t),这也就保证了期望的预设性能。????证毕
3 仿真与分析 针对高超声速飞行器动力学模型进行速度与高度的闭环仿真实验。速度与高度参考输入均由图 2所示的二阶参考模型给出。该二阶参考模型的传递函数为[26]
(85)

图 2 参考输入二阶模型结构 Fig. 2 Second-order model structure of reference input
图选项




二阶参考模型参数取为:ζA=0.9,ωA=0.1。RBF神经网络的输入ξVξhξγξθξQ以及非线性函数的高斯基宽度均为1。定义的自适应律的初值为:0。控制器参数的选取为:cV=0.5,ch=0.04,cγ=150,cθ=120,cQ=100,τV=10,τh=0.1,τγ=0.1,τθ=0.01,τQ=0.01,σV=1,σh=0.1,σγ=0.1,σθ=0.1,σQ=0.1。预设性能函数参数设计为:ρV0=30,ρV=2,lV=0.05,ρh0=ργ0=ρθ0=ρQ0=100,ρh=ργ=ρθ=ρQ=20,lh=lγ=lθ=lQ=0.05,κ=λ=1。仿真中,高超声速飞行器的初始状态取值如表 1所示。
表 1 高超声速飞行器的状态初值 Table 1 Hypersonic flight vehicle state initial value
参数 数值
V/(m·s-1) 2 500
h/m 27 000
γ/(°) 0
θ/(°) 1.529 5
Q/((°)·s-1) 0
η1 0.285 7
η2 0.235 0


表选项






通过MATLAB/Simulink搭建控制系统,采用步长为0.01 s的四阶Runge-Kuta法验证本文控制方法的有效性。在保持动压q=90 148 Pa不变的前提下,要求巡航阶段高超声速飞行器在速度阶跃100 m/s, 高度阶跃100 m作用下。控制的目的是要求系统输出跟踪给定的速度和高度参考指令并保证跟踪误差稳定在给定的预设性能范围内。为了检验控制律的鲁棒性,假设高超声速飞行器模型气动系数存在±40%的摄动量,定义
(86)

式中:C0为高超声速飞行器气动系数的标称值。
为了验证本文方法的优越性,将其与文献[27]中传统反演控制方法进行对比仿真,仿真结果如图 3~图 9所示。由图 3图 4可见,速度与高度均能准确跟踪参考输入,采用预设性能控制方法时的速度跟踪误差与高度跟踪误差均能够被限定在预设的区域内;与文献[27]方法相比,本文方法能够保证速度跟踪误差与高度跟踪误差具有较好的瞬态性能和稳态性能;当存在气动参数摄动时,本文方法的控制精度更高,也具有更强的鲁棒性。图 5表明,2种控制方法的航迹角控制效果并无很大差别,但本文方法的航迹角响应更平滑。虽然文献[27]方法的俯仰角与俯仰角速率响应更平滑,但采用本文方法时,这2个角度响应没有出现高频抖振,并且本文方法能够保证俯仰角以及俯仰角速率跟踪误差具有更好的动态性能与稳态精度。由图 6~图 8可见,2种控制方法的弹性状态与控制输入均没有高频抖振现象。图 9表明,误差转换函数εV(t)、εh(t)、εγ(t)、εθ(t)与εQ(t)均有界。
图 3 速度跟踪响应 Fig. 3 Velocity tracking performance response
图选项




图 4 高度跟踪响应 Fig. 4 Altitude tracking performance response
图选项




图 5 高度角曲线 Fig. 5 Curves of altitude angle
图选项




图 6 弹性状态 Fig. 6 Flexible states
图选项




图 7 燃料-空气比 Fig. 7 Fuel-to-air ratio
图选项




图 8 升降舵偏角 Fig. 8 Elevator declination
图选项




图 9 转换误差函数 Fig. 9 Conversion error function
图选项




4 结论 针对高超声速飞行器纵向动力学模型设计了一种预设性能神经反演控制方法。
1) 通过构造预设性能函数,使得速度跟踪误差和高度跟踪误差能够同时满足预先设定的瞬态性能和稳态精度。
2) 为了保证系统具有足够的鲁棒性应对参数及模型的不确定,在每个子系统反演控制器设计过程中的未知非线性函数引入RBF神经网络估计,在对不确定项逼近的过程中仅有一个参数需要实时更新,既有效将控制精度提高,又顺利避免了反演控制方法中的“微分膨胀问题”,并降低了计算量。
3) 基于Lyapunov函数证明了所有闭环系统均是有界的。仿真结果表明,同现有的反演控制器相比,本文所设计的控制方法可以很好地实现控制目标,满足预设性能且对未知的随机扰动具有较强的鲁棒性。

参考文献
[1] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913.
SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901-1913. (in Chinese)
[2] 黄琳, 段志生, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1505.
HUANG L, DUAN Z S, YANG J Y. The challenge to control science of near space hypersonic vehicles[J]. Control Theory and Application, 2011, 28(10): 1496-1505. (in Chinese)
[3] SOLOWAY D I, OUZTS P J, WOLPERT D H, et al.The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization: AIAA-2009-7329[R].Reston: AIAA, 2009.
[4] 董朝阳, 路遥, 王青. 高超声速飞行器指令滤波反演控制[J]. 宇航学报, 2016, 37(8): 957-963.
DONG Z Y, LU Y, WANG Q. Command filtered backstepping control for hypersonic vehicles[J]. Journal of Astronautics, 2016, 37(8): 957-963. DOI:10.3873/j.issn.1000-1328.2016.08.008 (in Chinese)
[5] FIORENTINI L.Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D].Columbus: The Ohio State University, 2010.
[6] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401-406.
[7] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387. DOI:10.2514/1.23370
[8] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869. DOI:10.2514/1.27830
[9] 李昭莹, 余令艺, 刘昊, 等. 高超声速飞行器非线性鲁棒控律设计[J]. 控制理论与应用, 2016, 33(1): 62-69.
LI Z Y, YU L Y, LIU H, et al. Nonlinear robust controller design for hypersonic vehicles[J]. Control Theory & Applications, 2016, 33(1): 62-69. (in Chinese)
[10] XU H J, MIRMIRANI M D, IANNOU P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838. DOI:10.2514/1.12596
[11] 余朝军, 江驹, 甄子洋, 等. 高超声速飞行器弹性自适应控制方法[J]. 哈尔滨工程大学学报, 2018, 39(6): 1026-1031.
YU C J, JIANG J, ZHEN Z Y, et al. A novel resilient adaptive control scheme for hypersonic vehicles[J]. Journal of Harbin Engineering University, 2018, 39(6): 1026-1031. (in Chinese)
[12] ZONG Q, WANG F, SU R, et al. Robust adaptive backstepping tracking control for a flexible air-breathing hypersonic vehicle subject to input constraint[J]. Journal of Aerospace Engineering, 2015, 229(1): 10-25.
[13] GAO D X, WANG S X, ZHANG H J. A singularly perturbed system approach to adaptive neural back-stepping control design of hypersonic vehicles[J]. Journal of Intelligent and Robotic Systems, 2014, 73(1): 249-259.
[14] BIN X. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity[J]. Nonlinear Dynamics, 2015, 80(3): 1509-1520. DOI:10.1007/s11071-015-1958-8
[15] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. DOI:10.1109/TAC.2008.929402
[16] BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica, 2009, 45(2): 532-538. DOI:10.1016/j.automatica.2008.08.012
[17] 王鹏飞, 王洁, 时建明, 等. 高超声速飞行器预设性能反演鲁棒控制[J]. 电机与控制学报, 2017, 21(2): 94-102.
WANG P F, WANG J, SHI J M, et al. Prescribed performance back-stepping robustness control of a flexible hypersonic vehicle[J]. Electric Machines and Control, 2017, 21(2): 94-102. (in Chinese)
[18] 张扬, 吴文海, 胡云安, 等. 基于全状态预设性能的受限制令反演控制器设计[J]. 控制与决策, 2018, 33(3): 479-485.
ZHANG Y, WU W H, HU Y A, et al. Constrained command backstepping controller design under full state prescribed performance[J]. Control and Decision, 2018, 33(3): 479-485. (in Chinese)
[19] 卜祥伟. 高超声速飞行器纵向运动非线型控制技术[M]. 西安: 西安电子科技大学出版社, 2018: 16-18.
BU X W. Nonlinear control technology for longitudinal motion of hypersonic vehicles[M]. Xi'an: Xidian University Press, 2018: 16-18. (in Chinese)
[20] BU X W, WU X Y, HUANG J Q, et al. Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers[J]. Neurocomputing, 2016, 175: 816-825. DOI:10.1016/j.neucom.2015.10.116
[21] 李惠峰. 高超声速飞行器制导与控制技术(下)[M]. 北京: 中国宇航出版社, 2012: 469-473.
LI H F. Hypersonic vehicles guidance and control technology(Ⅱ)[M]. Beijing: China Aerospace Press, 2012: 469-473. (in Chinese)
[22] 唐意东, 李小兵, 夏训辉. 高超声速飞行器弱抖振反演滑模控制律设计[J]. 导弹与航天运载技术, 2014, 17(6): 17-30.
TANG Y D, LI X B, XIA X H. Design of weak buffet back stepping sliding mode control law for hypersonic vehicles[J]. Missiles and Space Vehicles, 2014, 17(6): 17-30. (in Chinese)
[23] 高道祥, 孙增圻, 罗熊, 等. 基于Back-stepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5): 805-810.
GAO D X, SUN Z Y, LUO X, et al. Fuzzy adaptive control for hypersonic vehicle via Back-stepping method[J]. Control Theory and Application, 2008, 25(5): 805-810. (in Chinese)
[24] SANNER R M, SLOTINE J E. Gaussian networks for direct adaptive control[J]. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863. DOI:10.1109/72.165588
[25] 胡云安, 耿宝亮, 盖俊峰. 初始误差未知的不确定系统预设性能反演控制[J]. 华中科技大学学报(自然科学版), 2014, 42(8): 43-47.
HU Y A, GENG B L, GAI J F. Prescribed performance backstepping control for uncertain systems with unknown initial errors[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014, 42(8): 43-47. (in Chinese)
[26] 卜祥伟, 吴晓燕, 马震, 等. 基于状态重构的吸气式高超声速飞行器鲁棒反演控制器设计[J]. 固体火箭技术, 2015, 38(3): 314-319.
BU X W, WU X Y, MA Z, et al. State-reconstruction-based robust backstepping controller of air-breathing hypersonic vehicles[J]. Journal of Solid Rocket Technology, 2015, 38(3): 314-319. (in Chinese)
[27] BU X W, WU X Y, ZHANG R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2015, 352(4): 1739-1765. DOI:10.1016/j.jfranklin.2015.01.014


相关话题/控制 设计 系统 未知 文献

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 舰载机弹射起飞影响因素分析及侧向控制律设计*
    舰载机弹射起飞的过程虽然很短暂,但受到的力和力矩繁多,其动力学特性具有明显的非线性,所以基于传统的小扰动线性化技术已经无法满足弹射起飞过程建模和控制的需求,采用非线性的建模方式是十分必要的。在舰载机弹射起飞过程中,航母的甲板运动和侧风干扰等因素会使舰载机在离舰后出现姿态滚转和航迹偏移,不利于安全起飞 ...
    本站小编 Free考研考试 2021-12-25
  • 基于键合图模型的SHA/EMA余度系统的故障诊断*
    随着多电飞机概念的提出,功率电传作动系统开始越来越多地应用在飞机上,目前应用最广泛的两类功率电传作动器是电静液作动器(EHA)和机电作动器(EMA)。由于一些尚未解决的技术难题(如滚柱丝杠卡死)存在,功率电传作动器还不能完全取代传统的液压伺服作动器(SHA),而是通常采用与技术成熟的SHA组合成非相 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑多因素的可修系统任务可靠性分配方法*
    在设计阶段,为了满足系统可靠性顶层指标要求,需要运用合理的可靠性分配方法为每个单元分配对应的可靠性指标。对于不可修复的系统顶层指标[1-2],通常有平均失效前时间(MTTF)、失效率、可靠度等;对于可修复系统顶层指标,通常为可用度、失效率、平均故障间隔时间(MTBF)或平均故障修复时间(MTTR)。 ...
    本站小编 Free考研考试 2021-12-25
  • 动力涡轮转子结构系统力学特性稳健设计方法*
    涡轴/涡桨发动机动力涡轮转子是具有大长径比、多支点支承、质量/刚度分布不均匀的高速转子结构系统,其连接结构力学特性和支承刚度在工作过程中的分散性直接影响转子系统动力特性的稳健性。由于动力涡轮转子工作转速一般位于弯曲振型临界转速之上,故称为高速柔性转子系统[1]。连接结构力学特性随载荷环境改变,由此引 ...
    本站小编 Free考研考试 2021-12-25
  • 一种含闭环支链的新型并联机构设计与分析*
    目前,航天飞行器壳体多为复合材料加工而成的大直径薄壁筒状结构,因此在与环状金属端框的套装对接的过程中常常发生变形和翘曲,进而产生对接阻力大、工件易损坏、装配精度差等一系列问题[1-2]。目前,很多大型飞行器的套装方式为手动施力于螺旋装置进行推进,常导致工件变形、位姿调整困难、装配效率低,已经难以满足 ...
    本站小编 Free考研考试 2021-12-25
  • 六相永磁容错轮毂电机多物理场综合设计方法*
    电动装甲车兴起于20世纪60年代,相比于传统装甲车辆,电驱动装甲车省去了传动轴等机械部件,对车的牵引力控制可直接通过电机控制器完成,极大地提高了整车机动性[1-2]。轮毂电机作为电驱动系统的核心部件,其性能优劣对整车系统的可靠性有直接影响。装甲车工况复杂多变,恶劣的工作环境导致电机更容易出现故障[3 ...
    本站小编 Free考研考试 2021-12-25
  • 基于切换系统的变体飞行器鲁棒自适应控制*
    变体飞行器是一类极具发展潜力的现代新型概念飞行器,可通过改变自身的气动外形来适应不同的飞行环境、剖面和任务,确保整个飞行过程的最优飞行效能[1-2]。因此,相比于传统飞行器,变体飞行器具有更大的飞行包线和更好的环境适应能力[3],具有广阔的应用前景和重要的研究价值。但是,由于其强不确定性和复杂多变的 ...
    本站小编 Free考研考试 2021-12-25
  • 卫星姿态控制系统执行器微小故障检测方法*
    卫星是目前应用最为广泛的航天器,卫星的姿态控制系统故障会导致严重的后果,其中执行器由于长期处于工作状态中很容易发生故障,因此卫星姿态控制系统的执行器故障诊断问题很有研究价值。很多故障在早期表现很微小[1],通常会被系统扰动噪声掩盖,因此微小故障的检测对于故障的早期诊断有重要意义。基于解析模型的方法, ...
    本站小编 Free考研考试 2021-12-25
  • 基于分段常值推力的水滴悬停构型控制策略*
    随着空间领域的研究、开发以及应用的不断提高,航天器功能与结构日趋复杂,航天器在轨服务技术可以有效地保证航天器在复杂的空间环境中持久、稳定、高质量地在轨运行,因而成为当前空间技术研究的热门[1-6]。航天器在轨服务技术主要包含在轨检查、交会对接和编队飞行等,其中涉及的一个核心问题是航天器的绕飞问题,即 ...
    本站小编 Free考研考试 2021-12-25
  • 窄线宽半导体激光器的热设计及优化*
    半导体激光器作为原子陀螺仪中的激光泵浦光源,其热特性对仪器整体具有较大影响。伴随着半导体激光器其相关集成芯片的广泛研究与应用,其热问题一直是人们关注的焦点之一。虽然半导体激光管具有较高的光电转换效率,但工作时仍然有相当部分的电能转换为了热能,尤其是近年来,半导体可调谐激光器的设计与封装朝尺寸轻薄短小 ...
    本站小编 Free考研考试 2021-12-25