删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小型涡扇发动机燃油控制规律*

本站小编 Free考研考试/2021-12-25

航空发动机的工作过程是极为复杂的气动热力学过程,为了保证发动机运行的稳定性及安全性,必须对此过程加以控制,这是发动机控制系统的职责[1]。而航空发动机建模与仿真是分析其控制规律以及低成本、高效率、短周期研制发动机数控系统的重要工具和手段[2]
目前,发动机常见建模方法有解析法和试验法。解析法(即理论模型法)是根据发动机运行过程中遵循的气动热力学规律建立其数学模型;试验法(即系统辨识法)是基于发动机试验数据进行分析处理从而获得数学模型[3]。试验法对数据采集有较高的要求,所建模型在适用范围上具有一定局限性;而解析法所建模型精度较高,可在全包线内模拟发动机动态与稳态特性,因此被国内外普遍采用[4]
涡扇发动机因为经济性等优点被民用喷气飞机大量装备,并且在当前极为热门的无人机领域也有着广泛应用。DGEN380是由法国Price Induction公司为小型飞机所设计制造的大涵道比小型涡扇发动机,因体积小、污染少和油耗低等优势被欧美国家用于教学研究,建模并研究其燃油控制规律对于了解小型涡扇发动机性能和控制方案将会带来一定帮助。
本文结合DGEN380发动机特性采用解析法建立其部件级非线性数学模型,利用MATLAB平台对模型进行稳态、动态仿真验证,提出部件共同工作方程组求解过程中常见问题的解决方法,并研究发动机燃油控制规律。
1 发动机结构及建模假设 DGEN380发动机为双转子、分开排气涡扇发动机,核心机采用单级离心式压气机、环形回流式燃烧室和轴流式高压涡轮,低压转子则由高涵道比风扇、齿轮箱(低压转速/风扇转速=3.32)、轴流式低压涡轮组成。采用先进的集成式FADEC控制系统,燃油泵等附件系统均为电驱动且几何不可调。图 1为DGEN380发动机框图。图中:鹅颈为风扇出口至压气机入口的内涵气体通道。
图 1 DGEN380发动机框图 Fig. 1 Block diagram of DGEN380 engine
图选项




因为实体发动机极为复杂,建立与其完全符合的模型难度太高,为简化发动机数学模型推导,特作出如下假设[5]:①忽略燃烧延时及引气流量;②忽略部件热交换以及容积惯性;③气体在外涵道和尾喷管中完全膨胀;④气体绝热指数不随温度变化;⑤高、低压转子转动惯量为常数;⑥鹅颈、外涵道、尾喷管总压恢复系数为常数。
2 发动机气动热力学模型 本文按部件结构顺序,结合发动机本身设计参数以及特性数据,从进气道到尾喷管逐一建立气体流动过程与热力学过程的部件数学模型[6],最后在MATLAB平台上分别将各部件模型公式整合打包为M函数形式。
以压气机为例,按计算顺序排列打包各气动热力学公式后[7],其函数模型最终形式如下:
(1)

式中:模型输入量T25*P25*分别为压气机进口总温和总压(即鹅颈出口处总温和总压);nhπc分别为高压转子转速和压气机增压比;输出量P3*T3*W3corW3Nc分别为压气机出口气体总压、总温、换算流量、实际流量和压气机功率。
旋转部件(风扇、压气机和涡轮)建模由于缺少特性数据来构建效率以及流量的插值函数[8],本文使用了读图软件“GetData”,从发动机技术参数文献上扫描特性图后利用该软件读取所需特性数据[9],并以此来绘制可以显示当前部件工作状态的特性图。以压气机为例,图 2为重绘的压气机特性图。图中:方形点为当前工作点。
图 2 压气机特性图 Fig. 2 Figure of compressor characteristics
图选项




将各部件模型按结构顺序组合,图 3为发动机气动热力学模型结构框架图。与压气机模型类似,进气道模型fin、风扇模型ffan、外涵道模型fbyp、鹅颈模型fgoo、燃烧室模型fcomb、高压涡轮模型fhpt、低压涡轮模型flpt和尾喷管模型fnoz的输出量分别为:各部件出口气体总温T*、总压P*,实际流量W、换算流量Wcor,排气速度大小V,内、外涵推力大小FcoldFhot,部件功率N,涵道比B,数字下标代表各部件出口处横截面编号。从图 3可以看出,按气体流动顺序,后者部件数学模型的输入量均含有前者的输出量。因此,按该顺序将各部件的M函数模型排列组合后,只需要3个自变量(飞行高度H、飞行马赫数Ma和供油量qmf),以及6个状态参数(低压转子转速nl、高压转子转速nh、风扇增压比πf、压气机增压比πc、高压涡轮落压比πhpt和低压涡轮落压比πlpt),即可实现各部件模型的联动运行。图 3中:Nf为风扇功率;Nhpt为高压涡轮功率;Nlpt为低压涡轮功率。
图 3 发动机气动热力学模型结构框图 Fig. 3 Structure block diagram of engine thermodynamics model
图选项




以此打包各部件的M函数模型,获取可用以进行循环计算的发动机临时运行M函数模型:
(2)

3 稳态仿真及验证 发动机工作状态分为稳态和过渡态2种,根据发动机各部件共同工作的原理,当其处于稳态运行时,各部件之间存在平衡关系,并由此可以列出稳态部件共同工作方程[10]
1)风扇与内外涵流量平衡方程:
(3)

2)燃烧室出口与高压涡轮流量平衡方程:
(4)

3)高、低压涡轮流量平衡方程:
(5)

4)低压涡轮与尾喷管流量平衡方程:
(6)

5)高压转子轴功率平衡方程:
(7)

式中:ηhpm为高压转子轴机械效率,本文取常数。
6)低压转子轴功率平衡方程:
(8)

式中:ηlpm为低压转子轴机械效率,本文取常数。
已知HMaqmf时,由建立的发动机临时运行模型将平衡方程式(3)~式(8)中各参量用参数nlnhπfπcπhptπlpt表示,由此可获得一个6维非线性平衡方程组[11]。求解该方程组即可获取发动机当前工作状态参数,并可通过临时运行模型运行获取其他性能参数,从而建立仅需3个输入量即能运行计算的发动机实际稳态工作模型:
(9)

3.1 设计点计算 发动机非线性方程组常用的数值求解方法有Newton-Raphson法、遗传算法、N+1点残量法等。本文选用Newton-Raphson法和遗传算法对发动机设计点进行仿真计算,并对这2种方法进行评估对比,指出二者在计算过程中的常见问题及对应解决方法。
1) Newton-Raphson法在非线性方程组求解过程中因具有较快的收敛速度等优点被广泛采用[12]。将发动机在设计工作条件下(高度3 048 m,马赫数0.338,供油量0.027 6 kg/s)的稳态共同工作方程组去量纲化,使用Newton-Raphson法对其求解,并选取欧几里得范数作为解的误差检验函数。
计算过程为:输入初猜解向量,调用发动机临时运行模型计算当前误差,若满足精度要求则输出当前解,不满足则对解向量扰动后调用临时运行模型计算雅可比矩阵,并根据Newton-Raphson法迭代公式计算修正解向量,循环直至满足精度要求。图 4为Newton-Raphson法误差收敛图,迭代50次后收敛残差为1.4×10-15
图 4 Newton-Raphson法误差收敛图 Fig. 4 Error convergence map of Newton-Raphson method
图选项




2)遗传算法在理论上具有全局优化性能、适应性强、稳定性高,与Newton-Raphson法相比不需要求导也不具有初值敏感性。对强非线性问题,遗传算法有其独特优势[13]。将方程组去量纲化,选取其欧几里得范数作为目标函数和解的误差检验函数用以衡量种群个体适应度。将非线性方程组求解问题转化为求解目标函数最小值的最优化问题[14],并调用MATLAB遗传算法工具箱进行求解。
计算过程为:根据边界范围生成解向量的初始种群,调用发动机临时运行模型计算各个体目标函数值,若满足精度要求则输出最优解,没有则执行选择、交叉、变异运算生成下一代种群,循环直至满足要求。
针对遗传算法求解速度慢,以及在发动机模型求解时存在的局限性,即在自变量范围内随机生成的种群个体参数在模型计算时不匹配所引发的程序报错和终止问题(例如旋转部件模型的增压比或其他运行参数背离发动机工作点造成后续部件模型无法运行),本文对一般基础模型做出如下改进:当发动机临时运行模型对初始种群个体进行运行计算时,一旦超出部件模型或其他相关工作限制,则直接给出一组模型输出量使当前解的误差值极大,由于采用了比例(轮盘)选择运算,目标函数值大的个体会被更快淘汰,提高了搜索速度,算法则可以流畅地搜索最优解并不断排除无效解。图 5为模型计算流程改进示意图。图中:虚线部分为新增改进步骤。
图 5 模型改进示意图 Fig. 5 Schematic of model improvement
图选项




设置种群规模为1 000,单点交叉概率为0.8,变异方式为自适应变异。图 6为遗传算法计算过程误差收敛图。
图 6 遗传算法误差收敛图 Fig. 6 Error convergence map of genetic algorithm
图选项




Newton-Raphson法和遗传算法的求解结果见表 1
表 1 Newton-Raphson法、遗传算法仿真结果 Table 1 Simulation results of Newton-Raphson method and genetic algorithm
方法 nl/
(r·min-1)
nh/
(r·min-1)
πf πc πhpt πlpt
Newton-Raphson法 42 798 50 653 1.16 4.56 2.28 1.93
遗传算法 42 919 50 712 1.17 4.56 2.30 1.92
实际值 42 830 50 687 1.16 4.57 2.27 1.93


表选项






图 4图 6表 1对比可见,Newton-Raphson法具有高收敛速度及精度,但其在求解过程中亦有诸多问题,例如精度不足的初猜值以及不合适的扰动步长会造成迭代不收敛或雅可比矩阵不可逆,以及对靠近限制边界的工作点求解时易出现迭代超出限制造成模型程序报错,对此需要对上述相关参数进行反复调试,此方法对编程技术有一定要求;改进模型后遗传算法在求解最优解时更有针对性,从图 6中可见背离工作点的个体被迅速淘汰,其搜索速度虽不如Newton-Raphson法但也满足需求,此方法适应性强的优点也适合用来进行动态仿真。
3.2 多点仿真验证 采用第3.1节Newton-Raphson法的方式对固定飞行条件(高度3 048 m,马赫数0.338)、不同供油量时的发动机模型进行稳态仿真计算,并将仿真曲线与实际进行对比,图 7为推力和涵道比的变化对比图。
图 7 推力和涵道比变化对比 Fig. 7 Comparison of thrust and bypass ratio variation
图选项




可见,简化模型的仿真结果与实际误差约小于3%,较好地反映了供油量变化时发动机推力及涵道比的变化趋势。
4 动态仿真及验证 将动态过程视为由准稳态平衡点构成的过渡态过程,过程中仍满足部件流量平衡关系,故发动机实际动态工作模型的建立与稳态相似,不同的是动态过程中高、低压转子轴能量不再保持平衡,产生剩余功率[15],其能量平衡方程变为
(10)

(11)

式中:JhJl分别为高压转子和低压转子的转动惯量。本文采用欧拉法计算微分项[16],新方程组求解与稳态类似。
取仿真步长为20 ms,固定飞行条件(高度3 048 m,马赫数0.338)下按给定的加速供油规律进行动态仿真计算。图 8为该过程加速线在旋转部件特性图上的显示(圈内曲线),以风扇和低压涡轮为例,由此可以直观地显示工作点在发动机模型特性图上的变化趋势。
图 8 风扇和低压涡轮特性图上的加速线 Fig. 8 Acceleration lines on fan and low pressure turbine characteristic maps
图选项




图 9为该加速过程给定的供油规律曲线,以及模型性能参数变化与实际的对比,以推力为例。可见, 动态模型仿真结果较好地反映了该加速过程推力变化趋势,对比误差小于3%。
图 9 推力、供油量变化 Fig. 9 Changes of thrust and fuel supply
图选项




5 燃油控制规律 因DGEN380发动机是典型的几何不可调发动机,故采用以供油量为控制量的单变量控制方案。当油门杆(PLA)位置一定而飞行条件发生变化时,发动机控制系统通过调节供油量qmf来保持被控参数不变,并且为了保证不同飞行阶段发动机的潜力能得到较大发挥,随着进口总温T2*变化所选择的被控参数也不同[17];当快速推动PLA加速时,FADEC系统给定加速控油规律使被控转子转速按期望变化。图 10为控制系统示意图。图中:EGT为排气温度。
图 10 DGEN380发动机控制系统 Fig. 10 Control system of DGEN380 engine
图选项




以发动机高度特性为例,当飞行高度增加时,发动机进口总温T2*降低,风扇负荷降低,所需低压涡轮功率也降低,若要保持低压转子转速nl不变,则需要减少供油量以降低涡轮进口燃气温度,而此时燃烧室出口的燃气温度也会因此降低,高压转子转速也随之下降,推力则因空气流量减小而持续下降。
基于建立的发动机模型,本文对变飞行高度时发动机燃油控制规律进行模拟计算,即在飞行高度增加过程中保持低压转子转速不变,计算供油量、高压转子转速和推力等参数并观察其变化趋势。计算方法为:将目标转子转速作为已知量,供油量作为未知量,利用发动机临时运行模型进行求解。已知HManl 3个输入量时,利用发动机临时运行模型可将平衡方程组中的变量用参数qmfnhπfπcπhptπlpt表示,借此获取一个新的6维平衡方程组,求解方法与之前稳态仿真类似。图 11为飞行高度增加时保持PLA位置及马赫数0.34不变,选取低压转子转速为被控参数,基于发动机模型计算所得的供油量、推力以及高、低压转子转速的变化曲线。
图 11 供油量、推力和转子转速变化 Fig. 11 Change of fuel supply, thrust and rotating speed
图选项




图 11中可见, 该过程中发动机供油量、高压转子转速和推力均随高度增加而降低,模型仿真结果与理论趋势相符合。
同理,可以通过制定过渡态过程目标转子加速/减速线来计算该过程中供油量变化规律[18],其数值计算方法与第4节的动态仿真类似,此处不再赘述。
6 结论 本文以DGEN380小型涡扇发动机为研究对象,建立其部件级非实时气动热力学模型并进行仿真计算,针对遗传算法在求解发动机模型时的局限性对基础运行模型加以优化改进,并基于模型分析DGEN380发动机的燃油控制规律,试验结果表明:
1) Newton-Raphson法在模型方程组求解时具有更好的精度和收敛速度,而改进模型后遗传算法在搜索最优解时打破了原有的局限性,背离工作点的解被迅速排除,表现出更好的适应性和流畅性。
2)稳态、动态模型仿真结果与实际试验数据十分接近,验证了建模方法的有效性,模型即时显示的部件特性图能够更加直观地展现工作点的变化趋势。
3)当发动机进口总温发生变化时,控制系统通过调节供油量使被控参数保持不变,以变飞行高度时发动机燃油控制规律为例进行仿真计算的结果与理论预期完全符合。

参考文献
[1] KONG X X, WANG X, TIAN D L, et al. An extrapolation approach for aeroengine's transient control law design[J].Chinese Journal of Aeronautics, 2013, 26(5): 1106–1113.DOI:10.1016/j.cja.2013.04.027
[2] 冯海峰.航空涡轴发动机数学建模方法与控制规律研究[D].西安:西北工业大学, 2007:1-3.FENG H F.Study of aero turbine engine mathematic model and control law[D].Xi'an:Northwestern Polytechnical University, 2007:1-3(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10699-2007057945.htm
[3] DUYAR A, GU Z, LITT J. A simplified dynamic model of the T700 turboshaft engine[J].Journal of the American Helicopter Society, 1995, 40(4): 62–70.DOI:10.4050/JAHS.40.62
[4] JAW L C, MATTINGLY J D. Aircraft engine control design, system analysis, and health monitoring[M].Reston: AIAA, 2009: 187-201.
[5] 钱得峰.大涵道比民用涡扇发动机部件级建模技术研究[D].南京:南京航空航天大学, 2010:17-18.QIAN D F.Research on component-level modeling technology for high bypass ratio civil turbofan engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:17-18(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10287-1011291913.htm
[6] 蔡开龙, 谢寿生, 胡金海, 等. 涡扇发动机燃油综合控制半实物仿真试验系统[J].推进技术, 2007, 28(4): 422–427.CAI K L, XIE S S, HU J H, et al. Semi-physical simulation experiment system of fuel integration control system for turbofan engine[J].Journal of Propulsion Technology, 2007, 28(4): 422–427.(in Chinese)
[7] 夏飞.基于MATLAB/Simulink的航空发动机建模与仿真研究[D].南京:南京航空航天大学, 2010:19-31.XIA F.Modeling and simulation of aeroengines based on MATLAB/Simulink[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:19-31(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10287-2007194355.htm
[8] GAUDET S R.Development of a dynamic modeling and control system design methodology for gas turbine[D].Ottawa:Carleton University, 2007:52-58.
[9] 骆广琦. 航空燃气涡轮发动机数值仿真[M].北京: 国防工业出版社, 2007: 70-90.LUO G Q. Numerical simulation of aero gas turbine engine[M].Beijng: National Defence Industry Press, 2007: 70-90.(in Chinese)
[10] 梁宁宁.航空涡轴发动机建模与控制规律研究[D].南京:南京航空航天大学, 2011:14-15.LIANG N N.Research on turboshaft engine modeling and control law[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:14-15(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041300.htm
[11] 苟学中, 周文祥, 黄金泉. 变循环发动机部件级建模技术[J].航空动力学报, 2013, 28(1): 104–111.GOU X Z, ZHOU W X, HUANG J Q. Component-level modeling technology for variable cycle engine[J].Journal of Aerospace Power, 2013, 28(1): 104–111.(in Chinese)
[12] 葛海.大涵道比涡轮风扇发动机建模技术研究[D].南京:南京航空航天大学, 2013:33-35.GE H.Research on modeling technology for high bypass ratio turbofan engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:33-35(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060689.htm
[13] JOSHI G, KRISHNA M B.Solving system of nonlinear equations using genetic algorithm[C]//International Conference on Advances in Computing, Communications and Informatics.Piscataway, NJ:IEEE Press, 2014:1302-1308.
[14] 陈磊, 霍永亮. 利用改进的遗传算法求解非线性方程组[J].西南师范大学学报(自然科学版), 2015, 40(1): 23–27.CHEN L, HUO Y L. On solution to nonlinear equation group by means of improved genetic algorithm[J].Journal of Southwest China Normal University (Natural Science Edition), 2015, 40(1): 23–27.(in Chinese)
[15] ZHANG S Y, YU X, HU Y.Study of fuzzy control with Smith forecast and compensation for aeroengine[C]//International Conference on Information and Automation.Piscataway, NJ:IEEE Press, 2010:594-598.
[16] 田金虎, 乔渭阳, 彭生红. 小涵道比涡扇发动机动态特性数值计算[J].航空动力学报, 2013, 28(9): 1988–1996.TIAN J H, QIAO W Y, PENG S H. Numerical calculation of dynamic performance of low-bypass ratio turbofan engine[J].Journal of Aerospace Power, 2013, 28(9): 1988–1996.(in Chinese)
[17] 王鑫.航空发动机数学模型与控制规律研究[D].西安:西北工业大学, 2007:13-14.WANG X.Study of aeroengine mathematic model and control law[D].Xi'an:Northwestern Polytechnical University, 2007:13-14(in Chinese).http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200504030.htm
[18] 樊思齐. 航空发动机控制(下册)[M].西安: 西北工业大学出版社, 2008: 50-61.FAN S Q. Aeroengine control (Ⅱ)[M].Xi'an: Northwestern Polytechnical University Press, 2008: 50-61.(in Chinese)


相关话题/计算 工作 过程 控制 遗传

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 四轮驱动汽车牵引力控制系统控制策略*
    四轮驱动汽车可以根据车辆的行驶工况及路面附着条件的不同全时将发动机的输出转矩传递至前后轴,提高汽车的纵向稳定性,有利于抵抗横向滑转[1]。由于传统汽车在不同工况下行驶时,车辆驱动力矩突然增大或路面附着系数减小时,车轮发生滑转,导致车辆纵向操纵性能及转向变差,同时降低横向稳定性,影响车辆正常行驶[2] ...
    本站小编 Free考研考试 2021-12-25
  • 面向集群环境的虚拟化GPU计算平台*
    近年来,GPU的应用场景从传统的图形图像处理领域扩展到通用计算领域,如航空航天装备研制、卫星遥感数据处理、天气预报、石油勘探和流体动力学等。鉴于GPU的高效能、高性价比特性,越来越多的编程人员开始关注GPU编程,并将其用于相关领域的高性能计算。GPU通用计算一般在集群系统中的多个节点上配备数量不等的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于LADRC的无人机高精度定高控制*
    “天钩”回收方式是一种新型的无人机(UAV)零长回收方式,具有对回收场地要求低、回收方式简单且安全可靠等优点,非常适合小型固定翼无人机。当无人机“天钩”回收时,首先下降至回收高度,跟踪期望的回收航线保持定高直线飞行,撞向“天钩”回收机构的回收索,回收索沿着具有后掠角的机翼向翼尖滑动,最终滑入安装在翼 ...
    本站小编 Free考研考试 2021-12-25
  • 事件触发控制在倒立摆系统中的仿真与实验*
    近年来,网络化控制系统得到了越来越多的应用。在网络化控制系统中,状态信息及控制信号通过共享(无线)网络进行传输,这使得网络化控制系统具有安装灵活和便于维护等优点[1]。但共享网络能够提供的通信带宽是有限的,受限带宽会使网络化控制系统出现延迟和丢包等不良现象。另外,信息的发送装置通常由电池供电,频繁的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于编队控制的自适应HELLO更新算法*
    在航空自组织网络中,随着定位装置和定位算法发展的成熟,基于地理位置信息的主动式路由协议(OptimizedLinkStateRoutingprotocol,OLSR)由于能主动进行周期性链路探测和路由维护而在动态网络环境下展现出较大的优势[1]。其中一个关键就是个体之间位置信息的更新和拓扑的维护主要 ...
    本站小编 Free考研考试 2021-12-25
  • 前体边条控制技术对航向静稳定性的影响*
    现代战斗机要求具有很高的机动能力,其飞行迎角范围要求达到大迎角。然而研究表明,现代战斗机,尤其是按静稳定原则进行设计的战斗机,存在中等、大迎角纵、横向稳定性严重非线性和不足的问题,当某一方向性能如航向首先出现静不稳定时,飞机会出现如尾旋等危险情况,大大危及飞行安全[1]。本文研究当飞机气动性能首先出 ...
    本站小编 Free考研考试 2021-12-25
  • 基于LMI的输出反馈μ控制器求解*
    结构奇异值μ理论于1982年被文献[1-2]提出,由于采用Small-μ方法减少了鲁棒判据的保守性同时在一定程度上兼顾性能鲁棒性,因而可以精确地处理具有混合不确定性系统的鲁棒分析问题,一直是鲁棒控制理论研究中的重点之一[3-4]。由于μ值难以得到精确解,通常采用Doyle[1]提出的D-K迭代法进行 ...
    本站小编 Free考研考试 2021-12-25
  • 基于随机参数逆高斯过程的加速退化建模方法*
    传统的基于退化数据的可靠性建模方法都是采用固定参数退化模型,近些年,随机参数退化模型已成为研究热点。Wang[1]研究了具有随机参数的Wiener过程,并使用最大期望(ExpectationMaximization,EM)算法估计随机参数的超参数值。Si等[2]研究了利用随机参数Wiener过程预测 ...
    本站小编 Free考研考试 2021-12-25
  • 有界双重控制导弹微分对策制导律*
    对于战术拦截导弹,鸭舵控制和尾舵控制方式各有优缺点,如鸭舵控制具有更好的寻的性能[1],但攻角易饱和,而尾舵控制更适用于中远程导弹等,所研究的双重控制导弹是指具有鸭舵和尾舵两组控制舵面的导弹[1-3]。该类型导弹将鸭舵控制和尾舵控制相结合,对于增强导弹拦截性能是一种合理的设计折中。文献[2]针对该类 ...
    本站小编 Free考研考试 2021-12-25
  • 高超声速飞行器全局有限时间姿态控制方法*
    1945年,钱学森先生首次提出高超声速的概念。一般认为,气体流动速度Ma大于5,即为高超声速,以Ma大于5速度飞行的飞行器被称为高超声速飞行器。此时,飞行器周围流场呈现出高超声速气体流动学所特有的特征,即薄激波层、黏性干扰、熵层、高温效应和低密度效应[1]。由于飞行速度快,飞行包络范围大,飞行环境复 ...
    本站小编 Free考研考试 2021-12-25