删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于随机参数逆高斯过程的加速退化建模方法*

本站小编 Free考研考试/2021-12-25

传统的基于退化数据的可靠性建模方法都是采用固定参数退化模型,近些年,随机参数退化模型已成为研究热点。Wang[1]研究了具有随机参数的Wiener过程,并使用最大期望(Expectation Maximization,EM)算法估计随机参数的超参数值。Si等[2]研究了利用随机参数Wiener过程预测装备剩余有效寿命的方法,并提出联合使用递归滤波算法和EM算法进行参数值估计。刘君强等[3]利用多阶段随机参数Wiener过程实现了航空发动机个体剩余寿命的实时预测。Lawless 和 Crowder[4]提出了基于随机参数Gamma过程的性能退化建模方法,用于分析某产品裂纹增长数据。Wang等[5]在假定Gamma过程的随机参数服从共轭先验分布的基础上,研究了融合历史退化数据与现场退化数据的建模方法。Tsai等[6]提出了基于随机参数Gamma过程的退化试验最优设计方法。逆高斯(Inverse Gaussian)过程同Gamma过程一样适用于对严格单调退化过程进行建模,Wang和Xu[7]、Peng等[8]、Ye 和 Chen[9]以及Peng[10]分别研究了随机参数Inverse Gaussian过程在性能退化建模中的应用。以上研究结果表明随机参数退化模型比固定参数退化模型具有更优的拟合效果和预测能力。
加速退化试验(Accelerated Degradation Test,ADT)已经广泛用于快速评估退化失效型产品的可靠性[11-14],然而目前的随机参数退化模型大都以同一应力下的退化数据为对象,缺少在ADT中应用的研究。Peng[10]对随机参数Inverse Gaussian过程在加速退化建模中的应用进行了有益的探索,然而研究工作是根据主观判断建立随机参数及其超参数与加速应力之间的关系,容易因为建模不合理导致外推到正常应力下的可靠性指标不准确。为了提高ADT中可靠性评估结果的准确性,本文以Inverse Gaussian过程为例研究了基于随机参数退化模型的加速退化建模方法,其主要特点是利用加速系数将加速退化数据都折算到工作应力下进行统一处理。首先,利用加速系数不变原则推导出退化模型的各参数在不同应力下应满足的关系式,由此建立参数的加速模型;接着,计算出各加速应力相对于工作应力的加速系数,进而将加速应力下的退化数据等效折算到工作应力下;然后,给出了参数估计方法,为了便于统计分析采用了随机参数的共轭先验分布,并且利用EM算法估计随机参数的超参数值;最后,通过仿真试验和实例应用对所提的方法进行了验证。
1 Inverse Gaussian过程 1.1 固定参数Inverse Gaussian过程 Inverse Gaussian过程{Y(t),t≥0}t为时间,具有下列3条性质:①Y(t)t=0在处连续,Y(0)=0且以概率1成立;②Y(t)具有独立增量,即对任意0≤t1<t2≤t3<t4Y(t2)-Y(t1)Y(t4)-Y(t3)相互独立;③独立增量ΔY(t)=Y(t+Δt)-Y(t)服从ΔY(t)~IGΔΛ(t)ΔΛ2(t)),IG(·,·)表示Inverse Gaussian分布,Λ(t)为时间函数且Λ(0)=0,ΔΛ(t)=Λ(t+Δt)-Λ(t),Δt为时间增量;μ为均值参数;λ为尺度参数。
可推导出Inverse Gaussian过程Y(t)~IG(μΛ(t),λΛ(t)2)Y(t)的概率密度函数(PDF)可表示为
(1)

D为产品的失效阈值,则Y(t)首次到达D的时间为产品的寿命ξ=inf{t|Y(t)≥D}ξ的累积分布函数(CDF)可由式(2)推出。
(2)

式中:Φ(·)为标准正态分布CDF。
1.2 随机参数Inverse Gaussian过程 为了描述产品个体之间的退化过程差异,提高退化模型的预测能力,采用了文献[10]提出的随机参数Inverse Gaussian过程:将μ、λ作为随机参数。为了便于统计分析,采用了μ、λ的共轭先验分布:假定λ服从Gamma分布λ~Ga(a,b),其PDF表示为
(3)

假定δ=1/μ服从条件正态分布δ|λ~N(c,d/λ),其PDF为
(4)

对于随机参数Inverse Gaussian过程,产品的可靠度函数可表示为
(5)

2 加速退化数据折算方法 由式(5)可知,确定可靠度函数R(t)需要估计出 θ =(a,b,c,d,Λ)。为了从加速退化数据中估计出 θ ,本文提出了基于加速退化数据等效折算的解决方案,利用加速系数将各加速应力下的退化数据都折算到工作应力下。
2.1 推导加速系数表达式 性能退化模型的某型参数值会随着应力水平的改变而变化,加速模型用于描述这些参数值随应力水平的变化规律[13]。ADT建模的重要环节之一是要正确判断出性能退化模型的哪些参数会随着加速应力发生变化,否则无法准确外推出产品在正常应力下的可靠性指标。本节利用加速系数不变原则[13, 15]推导Inverse Gaussian过程的哪些参数随着加速应力发生变化,进而确定加速系数表达式。
假设Fk(tk)Fh(th)分别表示产品在任 2个应力水平SkSh下的累积失效概率,tkth分别为SkSh下的时间,如有Fk(tk)=Fh(th),则可将应力Sk相当于应力Sh的加速系数Ak,h定义为
(6)

加速系数不变原则是指在一个有效的加速试验中,产品在2个加速应力间的加速系数值不随着试验时间的长短而变化。如果加速系数随试验时间发生了变化,说明产品在此2个加速应力下的失效机理并不一致[15-16],其加速退化数据不能用于外推产品在正常应力下的可靠性指标。据此,Ak,h应为一个与试验时间长短无关的常数,式(7)对任意tk恒成立:
(7)

将式(2)代入式(7),得

(8)

为了式(8)对任意tk恒成立,需要满足:
(9)

式中:λkλh分别为SkSh下的尺度参数;μkμh分别为SkSh下的均值参数。
设时间函数Λ(t)=trr为形状参数,此函数有很好的拟合特性,可以对凸型、凹型、线型退化过程进行建模。为了保证式(9)对任意tk恒成立,需要满足
(10)

式中:rkrh分别为SkSh下的形状参数。
可知r不随着应力水平发生变化,但是μλ会随着应力水平的改变而变化。假定加速应力为温度T,并选择Arrhenius方程作为加速模型。为了使μλ在任2个加速应力下都满足式(10)中的比例关系(μkh= ,可转换为),μλTk下可利用Arrhenius模型表示为μk=exp12/Tk),λk= exp3-2γ2/Tk),在Sh下可表示为μh=exp1- γ2/Th)λh=exp3-2γ2/Th)γ1、γ2γ3为非负系数,TkTh分别为第k个和第h个加速温度。可得

根据式(10)可得加速系数表达式为
(11)

2.2 利用加速系数折算退化数据 设T0为产品的工作温度,ti,j,kTk下第i个产品的第j次测量时间,y(ti,j,k)为对应的退化测量值,Λi,j,k=Λ(ti,j,k)-Λ(ti,j-1,k)为时间函数Λ(ti,j,k)的增量,yi,j,k=y(ti,j,k)-y(ti,j-1,k)为退化增量,k=1,2,…,QQ为加速应力总数;i=1,2,…,NkNkTk下的产品数量;j=1,2,…,Mi,kMi,kTk下第i个产品的测量次数。根据Inverse Guassian 分布的统计特性yi,j,k~ IG(exp12/Tii,j,k,exp3-2γ2/Tii,j,k2),建立似然函数:
(12)

可解得极大似然估计值,将代入式(11)可解得Tk相对于T0的加速系数Ak,0
根据式(6)对加速退化数据进行折算,在保持退化测量值y(ti,j,k)不变的同时对测量时间ti,j,k进行折算:
(13)

式中:y(ti,j,k(0))ti,j,k(0)为从Tk折算到T0的退化数据。为了表达方便,y(ti,j)ti,j分别为折算后的退化测量值和测量时间,此时i=1,2,…,n,n为ADT中的样品总数;j=1,2,…,mi,mii个产品的测量次数。
3 参数估计方法 设为折算后的退化增量,为折算后的时间增量,其中可由式(12)估计出。如果能从Δyi,j和ΔΛi,j中估计出未知参数向量 Ω =(a,b,c,d),就可确定产品的可靠度函数。
根据Inverse Gaussian过程的统计特性Δyi,j~IGiΔΛi,jiΔΛi,j2),建立似然函数为
(14)

结合式(3)及式(4),建立完全对数似然函数为
(15)

f(δii)为随机参数δi、λi的联合先验概率密度函数,则有f(δii)=f(λi)f(δii),则联合后验概率密度函数f(δii|Δ y i),可通过Bayesian公式f(δii|Δ y i)∝L(δii)f(δii)推导出,可得随机参数δi、λi的后验分布为
(16)

其中:

式(15)中的λi、ln λiλiδiλiδi2为含有随机参数的隐含数据项,因此无法直接极大化式(15)估计得 ,此时可采用二步极大似然估计法(简称二步法)或EM算法。二步法首先获得随机参数估计值向量,而获取超参数估计值;EM算法用隐含数据项的期望值代替其估计值,通过递归迭代获取超参数估计值[17-18]。文献[19]指出在相同样本量的条件下EM算法比二步法具有更好的估计准确性,故本文采用EM算法估计。E步的任务是求取隐含数据项的期望值,设 Ω (l)为第l次迭代后的估计值向量,则在第l+1次迭代中,λiln λi、λiδiλiδi2的期望值分别为
(17)

(18)

(19)

(20)

式中:ψ(·)为digamma函数。
将式(15)中的各隐含数据项利用对应的期望值代替后,M步的任务是极大化式(15),解得c(l+1)d(l+1)b(l+1)a(l+1)的表达式分别为
(21)

(22)

(23)

(24)

式中:ψ-1(·)为逆digamma函数。
EM算法的执行过程描述如下。
初始化:设 l=0,Ω (0)=(1,1,1,1);
l+1次迭代:
E步:计算E(λi|Δ y i,Ω (l)),E(ln λi|Δ y i,Ω (l)),E(λiδi|Δ y i,Ω (l))E(λiδi2|Δ y i,Ω (l))
M步 :?解得c(l+1)d(l+1)b(l+1)a(l+1),将 Ω (l)更新为 Ω (l+1)
结束条件:max( Ω (l+1)- Ω (l))<10-7l达到最大迭代数。
4 仿真验证 4.1 验证加速系数不变原则的推导结论 第2节通过加速系数不变原则推导出了Inverse Gaussian过程各参数的变化规律,本节通过仿真试验对推导结论公式进行验证,仿真模型为
(25)

仿真模型的参数值设置为:(a,b)=(2,1)(c,d)=(0.5,0.1);i=1,2,…,20j=1,2,…,10?i,ti,j=10,20,…,100Λ(ti,j)=ti,jr,r=0.5,1.0,2.0。验证步骤如下:
1) 利用仿真模型生成产品在应力Sk下的退化增量数据Δyi,j,k、ΔΛi,j,k
2) 利用Δyi,j,k、ΔΛi,j,k解得Sk下的参数估计值
3) 分别设加速系数Ak,h0.4,4,根据式(13)计算出折算到Sh下的退化增量数据Δyi,j,h、ΔΛi,j,h
4) 利用Δyi,j,h、ΔΛi,j,h解得Sh下的参数估计值
5) 计算出平均值,判断是否满足式(9)(其中)。
结果表明互不相同而几乎一致,表 1中显示的均值约为1,并且 的均值非常接近Ak,h,这说明基于加速系数不变原则推导结论是正确的。
表 1 仿真结果 Table 1 Simulation results
rAk,h=0.4Ak,h=4
的均值的均值的均值的均值的均值的均值
0.51.000 00.400 10.400 11.000 04.000 24.000 1
1.01.000 10.400 00.400 01.000 04.000 04.000 0
2.01.000 00.400 20.400 01.000 03.999 94.000 0


表选项






4.2 验证本文所提的建模方法 通过仿真模型生成产品在工作应力下和3个加速应力下的性能退化数据,分别利用固定参数和随机参数Inverse Gaussian过程对加速退化数据建模,外推出产品在工作应力下的可靠度。将利用工作应力下性能退化数据获取的产品可靠度作为标准值,评价本文所提建模方法是否比传统的固定参数建模方法更优。仿真模型为
(26)

(27)

(28)

(29)

验证步骤如下:
1) 设=3 000,工作温度T0=400 K,加速温度分别为T1=430 K,T2=460 K,T3=490 K,由式(26)计算出加速系数Ak,0k=1,2,3
2) 设(a,b,c,d)=(2.0,1.0,0.5,0.1),由式(27)生成T0下的随机参数i,0i,0)i=1,2,…,20
3) 由式(28)生成Tk下的随机参数i,ki,k)k=1,2,3
4) 设?i,ti,j=1,2,…,10 a,利用i,0i,0)由式(29) 生成T0下的退化增量数据(Δyi,j,0ti,j)
5) 利用i,ki,k)由式(29) 生成Tk下的退化增量数据(Δyi,j,k,Δti,j)k=1,2,3
6) 设失效阈值D=2,利用随机参数Inverse Gaussian模型对(Δyi,j,0ti,j)建模,获得可靠度函数R(0)(t)作为标准值。
7) 利用随机参数Inverse Gaussian模型对(Δyi,j,kti,j)建模,获得可靠度函数R(1)(t)
8) 利用固定参数Inverse Gaussian模型对(Δyi,j,kti,j)建模,获得可靠度函数R(2)(t)
9) 判断R(1)(t)R(2)(t)哪个与R(0)(t)更接近。
R(0)(t)R(1)(t)R(2)(t)的变化曲线如图 1所示,可见R(1)(t)R(0)(t)更接近,说明本文所提的建模方法相比传统的固定参数建模方法提高了可靠性评估的准确性。
图 1 可靠度曲线 Fig. 1 Reliability curves
图选项




5 实例应用 Meeker 和 Escobar[20]提供了某型碳膜电阻在恒定应力ADT中的退化数据。3组加速温度应力分别为83、133和173℃,产品的工作温度为50℃,试验过程中所有样品同时测量,测量时刻为452、 1 030、4 341和8 084 h,退化参量为电阻值的百分比增量。 更为详细的试验数据见文献[20]中的Table C.3,因为第27个样品的退化数据不是单调递增,本文剔除了第27个样品的退化数据。
首先对每个产品的退化过程是否服从Inverse Gaussian过程进行验证。由式(14)解出每个产品对应的参数估计值,根据文献[7],近似服从χ12分布。在置信水平为0.05的条件下,采用Anderson-Darling检验方法对是否服从χ12分布进行假设检验。每个产品对应的p值都大于0.05,故接受所有产品都服从Inverse Gaussian过程的原假设。
接着利用式(12)解得= (9.181,3 757.414,19.902,0.436),进而计算出加速系数A1,0=2.937A2,0=10.762A3,0=24.666。然后对加速退化数据进行等效折算,利用EM算法解得超参数估计值为=(27.892,1.599×10-3,12.348,0.271),迭代收敛过程如图 2所示。
图 2 超参数估计值的迭代收敛过程 Fig. 2 Iterative convergence process ofhyper-parameter estimates
图选项




最后将=(27.892,1.599×10-3,12.348,0.271,0.436)代入式(5)评估产品在50℃下的可靠性,可靠度(R)曲线如图 3所示,其中利用Bootstrap自助抽样法建立了可靠度预计值的95%置信区间[21-22]
图 3 产品在50℃下的可靠度曲线 Fig. 3 Reliability curves of product under 50℃
图选项




6 结 论 为了将随机参数退化模型应用于ADT以提高可靠性评估结果的准确性,本文以Inverse Gaussian过程为例提出了基于随机参数退化模型的加速退化建模方法。
1) 随机参数Inverse Gaussian过程具备很好的统计特性,适合对严格单调退化过程建模,是除了Wiener过程和Gamma过程之外另一种应用性较好的随机过程模型。
2) 根据加速系数不变原则可推导出退化模型各参数在各加速应力下应满足的关系式,为获得各种退化模型的加速系数表达式提供了一种可行方法。
3) 利用加速系数可实现加速退化数据的等效折算,这种处理思路还可为解决加速退化建模的其他难题提供有益参考。
4) 与传统的基于固定参数的建模方法相比,本文提出的基于随机参数退化模型的建模方法具有更好的拟合效果,能够提高可靠性评估的准确性。

参考文献
[1] WANG X. Wiener processes with random effects for degradation data[J].Journal of Multivariate Analysis, 2010, 101(2): 340–351.DOI:10.1016/j.jmva.2008.12.007
[2] SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J].Mechanical Systems and Signal Processing, 2013, 35(1-2): 219–237.DOI:10.1016/j.ymssp.2012.08.016
[3] 刘君强, 谢吉伟, 左洪福, 等. 基于随机Wiener过程的航空发动机剩余寿命预测[J].航空学报, 2015, 36(2): 564–574.LIU J Q, XIE Z W, ZUO H F, et al. Residual lifetime prediction for aeroengines based on Wiener process with random effects[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 564–574.(in Chinese)
[4] LAWLESS J, CROWDER M. Covariates and random effects in a Gamma process model with application to degradation and failure[J].Lifetime Data Analysis, 2004, 10(3): 213–227.DOI:10.1023/B:LIDA.0000036389.14073.dd
[5] WANG H W, XU T X, MI Q L. Lifetime prediction based on Gamma processes from accelerated degradation data[J].Chinese Journal of Aeronautics, 2015, 28(1): 172–179.DOI:10.1016/j.cja.2014.12.015
[6] TSAI C C, TSENG S T, BALAKRISHNAN N. Optimal design for degradation tests based on Gamma processes with random effects[J].IEEE Transactions on Reliability, 2012, 61(2): 604–613.DOI:10.1109/TR.2012.2194351
[7] WANG X, XU D. An inverse Gaussian process model for degradation data[J].Technometrics, 2010, 52(2): 188–197.DOI:10.1198/TECH.2009.08197
[8] PENG W W, LI Y F, YANG Y J, et al. Inverse Gaussian process models for degradation analysis:A Bayesian perspective[J].Reliability Engineering and System Safety, 2014, 130: 175–189.
[9] YE Z S, CHEN N. The inverse Gaussian process as degradation model[J].Technometrics, 2014, 56(3): 302–311.DOI:10.1080/00401706.2013.830074
[10] PENG C Y. Inverse Gaussian processes with random effects and explanatory variables for degradation data[J].Technometrics, 2015, 57(1): 100–111.DOI:10.1080/00401706.2013.879077
[11] PARK C, PADGETT W J. Accelerated degradation models for failure based on geometric Brownian motion and Gamma processes[J].Lifetime Data Analysis, 2005, 11(4): 511–527.DOI:10.1007/s10985-005-5237-8
[12] YE Z S, CHEN L P, TANG L C, et al. Accelerated degradation test planning using the Inverse Gaussian process[J].IEEE Transactions on Reliability, 2014, 63(3): 750–763.DOI:10.1109/TR.2014.2315773
[13] 王浩伟, 徐廷学, 赵建忠. 融合加速退化和现场实测退化数据的剩余寿命预测方法[J].航空学报, 2014, 35(12): 3350–3357.WANG H W, XU T X, ZHAO J Z. Residual life prediction method fusing accelerated degradation and field degradation data[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3350–3357.(in Chinese)
[14] LING M H, TSUI K L, BALAKRISHNAN N. Accelerated degradation analysis for the quality of a system based on the Gamma process[J].IEEE Transactions on Reliability, 2015, 64(1): 463–472.DOI:10.1109/TR.2014.2337071
[15] 周源泉, 翁朝曦, 叶喜涛. 论加速系数与失效机理不变的条件(Ⅰ)-寿命型随机变量的情况[J].系统工程与电子技术, 1996, 18(1): 55–67.ZHOU Y Q, WENG Z X, YE X T. Study on accelerated factor and condition for constant failure mechanism (Ⅰ)-The case for lifetime is a random variable[J].System Engineering and Electronics, 1996, 18(1): 55–67.(in Chinese)
[16] 王浩伟, 徐廷学, 王伟亚. 基于退化模型的失效机理一致性检验方法[J].航空学报, 2015, 36(3): 889–897.WANG H W, XU T X, WANG W Y. Test method of failure mechanism consistency based on degradation model[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 889–897.(in Chinese)
[17] BALAKRISHNAN N, LING M H. EM algorithm for one-shot device testing under the exponential distribution[J].Computational Statistics & Data Analysis, 2012, 56(3): 502–509.
[18] 韩立岩, 蔡明生, 尹力博. 正态逼近与基于覆盖宽度的EM估计[J].北京航空航天大学学报, 2013, 39(5): 654–659.HAN L Y, CAI M S, YIN L B. Approximation by normal distribution with covering width based on EM estimation[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 654–659.(in Chinese)
[19] 徐廷学, 王浩伟, 张鑫. EM算法在Wiener过程随机参数的超参数值估计中的应用[J].系统工程与电子技术, 2015, 37(3): 707–712.XU T X, WANG H W, ZHANG X. Application of EM algorithm to estimate hyper parameters of the random parameters of Wiener processes[J].Journal of Systems Engineering and Electronics, 2015, 37(3): 707–712.(in Chinese)
[20] MEEKER W Q, ESCOBAR A. Statistical methods for reliability data[M].New York: John Wiley & Sons, 1998: 630-640.
[21] EFRON B. Better bootstrap confidence intervals[J].Journal of American Statistical Association, 1987, 82(397): 171–185.DOI:10.1080/01621459.1987.10478410
[22] MARKS C E, GLEN A G, ROBINSON M W, et al. Applying bootstrap methods to system reliability[J].The American Statistician, 2014, 68(3): 174–180.DOI:10.1080/00031305.2014.928232


相关话题/过程 数据 可靠性 测量 工作

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于准静态拉伸试验的临界CTOA测量*
    轻质薄壁结构是航空领域非常重要的结构,当该结构出现裂纹时,必须对该结构采用全面的断裂韧性分析以保证飞机服役期间的安全。含裂纹薄壁结构裂纹尖端约束较低,其断裂失效通常与大范围屈服及裂纹扩展有关,线弹性断裂力学不再适用于其断裂特性分析,弹塑性断裂力学成为评估该结构断裂特性的主要手段。大量的试验结果及有限 ...
    本站小编 Free考研考试 2021-12-25
  • 基于过程神经网络的液体火箭发动机状态预测*
    液体火箭发动机结构复杂,工作环境恶劣,是故障敏感多发部位,对其工作状态进行预测是发现早期故障并采取相应措施的重要手段,特别是对于可重复使用液体火箭发动机,状态预测是提高其系统安全性、完好性和保障任务成功的关键技术。液体火箭发动机是由许多不同独立动态环节彼此交叉耦合构成的复杂热流体动力系统,通过建立其 ...
    本站小编 Free考研考试 2021-12-25
  • 基于广义退化的机械结构模糊时变可靠性分析*
    由于航天在轨产品服役期内无法维护,在研制时需要对其整个服役期内的可靠度进行分析评价,而其中机械产品由于样本量少或样本缺失使得一些参数除随机性外,往往还存在大量的模糊性问题,此时不能采用常规的概率理论的处理方式[1-2]。国内外****关于机械产品模糊时变可靠性的研究起步较晚。Ayyub和Lai[3] ...
    本站小编 Free考研考试 2021-12-25
  • 模型燃烧室内不稳定燃烧发展过程的数值分析*
    高频燃烧不稳定性是液体火箭发动机研制过程中面临的重大挑战之一,一旦发生,破坏性极大。虽然很早便在液体火箭发动机中发现了不稳定燃烧现象,然而由于液体推进剂燃烧涉及多个物理和化学过程,发生不稳定燃烧时各子过程之间存在非线性耦合,使得对其产生机理和发展过程至今尚未完全认识清楚[1]。目前,已经在多种类型的 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑认知不确定的雷达功率放大系统可靠性评估*
    在实际工程中,某些系统除“正常工作”和“完全失效”2种状态外,可以在多个性能水平下运行,这样的系统称为多态系统(Multi-StateSystem,MSS)[1],与二态系统模型相比,多态系统模型能够准确地描述部件的多态性,更加灵活地表征部件性能变化对系统性能和可靠性的影响[2]。20世纪70年代多 ...
    本站小编 Free考研考试 2021-12-25
  • 基于优化字典学习算法的压缩数据收集*
    无线传感器网络(WirelessSensorNetworks,WSNs)由多个具有无线通信能力的传感器节点组成,部署在特定的监测环境中,对物理环境信息的收集是其主要应用之一[1]。典型的WSNs数据收集过程是:传感器节点周期性地感知物理环境信息,并将采集到的传感器数据通过多跳转发的方式汇聚到基站节点 ...
    本站小编 Free考研考试 2021-12-25
  • 蜻蜓爬升过程飞行特征实验研究*
    微型飞行器(MicroAirVehicle,MAV)的发展和应用使昆虫飞行机理的研究越来越受到相关人员的关注[1]。昆虫在不同飞行状态下身体和翅膀运动参数的准确描述和飞行特征的探究为昆虫飞行机理研究和仿生流体力学的探索提供重要的数据依据。在众多飞行能力出众的昆虫界,蜻蜓又被称为“飞行之王”,有着其独 ...
    本站小编 Free考研考试 2021-12-25
  • 信息缺失的航空发动机传感器数据重构*
    航空发动机是航空飞行器的重要系统,航空发动机状态监视是健康管理的第一步,根据状态监视结果进行故障诊断、故障隔离和剩余寿命周期预测等。状态监视离不开状态参数数据,目前主要使用的有气路数据、滑油数据和孔探数据等,将这些信息融合能够进一步提高健康管理效率和质量。随着传感器技术的发展,面临着传感器数据维度增 ...
    本站小编 Free考研考试 2021-12-25
  • 磁场梯度张量测量法消除卫星磁干扰*
    在卫星上搭载磁力仪开展磁场探测是研究空间环境与空间物理的重要手段,同时也是确定卫星姿态和开展磁自主导航的重要手段[1-3]。在众多开展空间磁场测量的任务中,国际上有代表性的卫星主要有:Cluster、ACE和CHAMP等,国内开展磁场探测的卫星主要有:双星和电磁监测试验卫星。在轨运行期间,卫星本体产 ...
    本站小编 Free考研考试 2021-12-25
  • 增强RRAM可靠性的热通量压缩算法*
    传统的非挥发存储器如Flash由于其在面积、功耗和速度等方面的限制,已经逐渐不能满足大规模存储的需求。阻变存储器(ResistiveRandomAccessMemory,RRAM)由于它的高集成度、高读写速度、低功耗、与CMOS工艺兼容以及抗辐射等优点,被认为是继Flash之后最有希望成为主流非挥发 ...
    本站小编 Free考研考试 2021-12-25