删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于序列图像的空间目标三维重建

本站小编 Free考研考试/2021-12-25

?空间目标的分类、识别对空间态势感知和空间安全具有重要的实际意义。利用天基监视系统获取的空间目标可见光图像序列,可以对空间目标进行三维重建,恢复目标的三维信息,从而加深对空间目标的认识。同时基于序列图像的三维重建方法也是计算机视觉的经典问题,其一直是研究的热点。因此,研究空间目标三维重建问题,不仅具有理论价值,还具有重要的实际工程意义。
20世纪90年代初,关于立体视觉的研究开始趋于成熟。1992年,卡内基梅隆大学Tomasi和Kanade[1]在假定相机为正交投影模型的条件下,利用仿射分解的方法构建了第一个基于图像的三维重构系统。Shum等[2]、Cipolla等[3]通过人为确定几何约束的方法分别提出了2种人工交互的三维重建系统。Pritchett和Zisserman[4]、Faugeras等[5]分别利用分层重建的思想,完成了视觉导航系统和对建筑物的三维重建。
21世纪以来,运动法(Structure From Motion,SFM)成为了基于序列图像三维重建的主流方法。基于SFM方法,Nistér[6, 7, 8]开发了基于未标定视频序列的自动稠密重构系统;Pollefeys等[9, 10, 11]开发并完善了基于连续拍摄的图像序列的三维场景自动建模系统;Snavely等[12, 13]开发了Photo Tourism和Photosynth 2个三维重建系统。在SFM方法中,集束调整(Bundle Adjustment,BA)技术[14]是一个重要的优化方法,而针对集束调整方法运算量大、不适于大规模重建的问题,又有研究者分别提出了稀疏集束调整(Sparse Bundle Adjustment,SBA)[15]等改进方法。在稠密重建方法中,Furukawa和Ponce[16]提出的基于面片的多视几何重建(Path-based Multi-View Stereo,PMVS)算法利用立体匹配技术在目标的表面生成一层稠密的面片,能够很好地表达目标的三维结构及细节。
针对空间目标三维重建的研究少有公开报道,尚处于起步阶段。国内方面,傅丹[17]针对空间目标中存在的大量直线元素开展了基于直线特征的空间目标三维重建研究;唐永鹤[18]考虑到卫星发射过程对相机参数的影响,重点开展了在线标定技术的研究,仅重建生成了稀疏点云;曾蔚等[19]则提出了利用红外图像获取空间目标三维信息的红外-自阴影重建(Infrared-Shape From Shading,IR-SFS)算法。本文则重点研究基于SFM方法重建空间目标的稠密点云,以获得更精细的目标三维数据。
空间目标存在结构对称、纹理重复的特点,使得拍摄角度间隔较大(如接近180°)的2帧图像容易出现较多错匹配点,从而导致重建错误。针对此问题,本文对SFM方法提出改进措施,将序列目标图像的成像时间顺序作为迭代时的先验信息,顺序地加入新图像,直到添加完所有图像,再通过集束调整进行优化;同时针对空间目标成像数据匮乏,进行了空间目标可见光图像的仿真,并开展了地面模拟成像实验,为空间目标三维重建研究提供数据支撑;在空间目标图像仿真数据上进行了实验测试,探讨空间目标三维重建的边界条件,测试方法对噪声的鲁棒性。
1 本文方法图 1为本文空间目标三维重建方法的流程。首先通过特征点检测和匹配建立特征点匹配集合,然后利用SFM方法进行运动分析及稀疏点云重构,求出相机的运动信息后利用基于面片的目标稠密重建方法进行稠密重建,最后获得目标的稠密点云模型。
图 1 三维重建方法流程 Fig. 1 Flowchart of 3D reconstruction method
图选项


1.1 特征点检测与匹配图像匹配是基于图像序列进行三维重建的第1步,本文利用Lowe[20]提出的尺度不变特征变换(Scale Invariant Feature Transform,SIFT)特征进行图像特征点的检测和匹配。该特征具有局部性、特殊性、多量性和高效性等优点,且具有对图像缩放、旋转甚至仿射变化的不变性。
匹配过程中,先基于图像中各特征点的128维SIFT特征描述之间的欧氏距离进行粗匹配;之后又利用图像间的极线约束,通过随机采样一致(Random Sample Consensus,RANSAC)算法[21]排除误匹配点,从而得到最终匹配结果。
1.2 稀疏重建方法1.2.1 SFM方法SFM方法是一个迭代计算的过程。参考文献[22]的方法,首先,选取匹配点多和内点率高的图像作为初始图像对I1、I2,计算得到初始的相机运动信息及目标结构信息;然后,通过I1、I2之间的匹配点对的三角化过程得到目标的初始三维点云Mj;最后,通过最小化三维点云的反投影误差(即式(1)),优化目标的三维结构及相机投影矩阵。
式中:m1j、m2j为三维点集Mj对应在2帧图像I1、I2中的匹配点对;Nj为Mj中点云数目;K[RiTi]为相机参数矩阵;Ri为第i幅图的旋转矩阵;Ti为第i幅图像对应的平移矩阵。
得到初始的相机运动信息及目标的三维结构后,再逐个加入剩余的图像进行SFM迭代。
1.2.2 集束调整优化方法SFM方法中每加入一帧图像就可以获得该图像所对应的相机的参数及新的目标结构信息,然后可利用集束调整的方法来进行参数优化。集束调整优化方法实际上是通过调整所有的光束与相机的位置,从而使得总误差最小。对于N幅图像和M个特征点,集束调整的目标函数为
式中:Pi为第i帧图像的投影矩阵;D为欧氏距离。
1.2.3 SFM方法改进 利用文献[22]中的SFM策略对第2.1节中卫星仿真图像序列进行稀疏重建时,出现图 2所示的错误结果。原本均匀分布于一个圆周上的成像视点被错误地恢复成了2个半圆周,而重建出的稀疏点云则出现了类似于镜像对称的现象。
图 2 文献[22]中SFM方法的重建结果 Fig. 2 Reconstruction results by SFM method from Ref.[22]
图选项


造成以上错误的原因在于该SFM方法中添加新图像的策略仅考虑了图像间的特征点匹配的多少,而未考虑相机之间的相对位置关系。由于Helios 2A目标结构对称、纹理重复,因此角度间隔较大的2帧图像也可能出现较多匹配点对。图 3为成像角度间隔为180°的2帧图像之间的匹配信息。从图 3中可以看出,这2帧图像之间存在着较多的匹配点,而在进行SFM过程中,这些匹配点对是不应该被考虑的。
图 3 成像角度间隔相差180°的2帧图像匹配结果 Fig. 3 Match results of two frames imaged with angle difference of 180°
图选项


对此,本文通过将目标成像的先后顺序作为先验信息对SFM方法进行改进。设有空间目标图像序列Ii(i=1,2,…,N),以及该序列图像对应的成像时刻ti(i=1,2,…,N)。首先选取t1t22个时刻对应的2帧图像作为初始图像帧I1、I2,计算初始的相机运动信息及目标结构信息,进行集束调整;然后顺序添加下一时刻t3对应的图像I3,计算新图像对应的相机参数及新的目标结构,进行集束调整;最后按照成像时间顺序迭代添加新图像,直到添加完所有图像。
图 4为改进后的SFM方法对Helios 2A仿真图像序列进行重建获得的相机位置及稀疏点云。从图 4中可以看出,改进后的SFM方法解决了纹理重复问题,获得了正确的重建结果。
图 4 改进SFM方法重建结果 Fig. 4 Reconstruction results by improved SFM method
图选项


1.3 基于面片的目标稠密重建方法PMVS算法[16]针对已标定的多视图图像,无需深度和包围盒等初始化信息,只需要估计点的深度,然后通过局部光学连续性估计点的法向。空间目标图像序列背景简单,仅包含单个目标,通过PMVS算法能取得较好的三维重建效果。
PMVS算法实质是扩散与滤波的过程。该算法将稀疏重建获得的相机参数信息及稀疏点云作为输入,将初始特征点匹配得到的种子面片投影到对应的图像平面中,在投影的邻域内进行面片扩散,得到新的面片,然后对获取的面片进行优化,并进行滤波以去除错误的面片。迭代地进行扩散与滤波的过程,从而得到最终的目标面片模型。
2 实验与分析成像角度间隔和噪声等是影响空间目标三维重建效果的主要因素。本文通过实验研究,探讨了空间目标三维重建的边界条件,测试了方法对噪声的鲁棒性,并在此基础上获得了空间目标成像时的相机参数、空间目标稀疏点云以及稠密点云。
2.1 实验数据参考文献[23]中的仿真方法,选取BUAA-SID1.0库中的Helios 2A卫星模型进行成像仿真。设置成像相机焦距为24 mm,像元尺寸为10 μm,面阵大小为1 024×1 024。将相机设置在距离目标200 m的圆上,从纬度为零的视点开始,设置等间隔的视点组,得到绕卫星一周的可见光图像序列。图 5给出了角度间隔为5°时Helios 2A卫星72个视点图像中的4帧,从左至右旋转角度依次为10°、30°、60°和150°。
图 5 Helios 2A多视点图像 Fig. 5 Multi-view images of Helios 2A
图选项


为了测试方法对噪声的鲁棒性,利用MATLAB中的imnoise (I,‘gaussian’,m,v)函数对仿真出的图像加高斯白噪声。其中均值m设为0,方差v取值范围为0.001~0.010,这里的方差与真实噪声方差var之间的关系为var=v×2552
为了进一步测试三维重建方法的有效性,设计了地面模拟实验方法以获取空间目标可见光图像。采用支架搭建暗室并覆盖吸光布、遮光布以遮挡环境光线,防止反射灯光对目标造成干扰;用平行光源模拟太阳光照;用“神舟”飞船和“天宫一号”的缩比模型模拟空间目标;将目标置于一维转台上,转台以10°间隔旋转一周,在固定位置用相机对模型进行拍摄,以模拟获取空间目标图像的过程。另外,对拍摄图像进行预处理,去除背景噪声,分割出目标图像,以避免背景干扰。
图 6为地面实验获取的“神舟”飞船和“天宫一号”图像序列中的4帧,旋转角度依次为10°、40°、170°和260°。
图 6 地面仿真实验获取的图像序列 Fig. 6 Image sequences from ground imaging simulation experiments
图选项


2.2 结果与分析2.2.1 成像角度间隔由左至右以5°、10°、15°、20°和25°的成像角度间隔分别获得72帧、36帧、24帧、18帧和15帧图像序列。对这5组不同成像角度间隔的图像序列进行三维重建,获取的相机位置信息及相机旋转角误差分别如图 7和图 8所示。
图 7 不同成像角度间隔下稀疏重建的相机位置信息Fig. 7 Camera position information obtained from sparse reconstruction of images imaged with different angle separation
图选项


从图 7可以看出,在成像角度间隔为25°的情况下,稀疏重建仅得到了6个相机的位置信息,说明成像角度间隔为25°时已不能有效地对目标进行稀疏重建;从图 8中可以看出,随着成像角度间隔的增大,获取的相机旋转角的精度逐渐下降,但是仍然比较精确。
图 8 不同成像角度间隔下稀疏重建的相机旋转角误差 Fig. 8 Errors of camera rotation angle obtained from sparse reconstruction of images imaged with different angle separation
图选项


图 9、图 10则分别给出了不同成像角度间隔(由左至右分别为5°、10°、15°、20°和25°)下三维重建方法获得的目标稀疏点云及稠密点云。从视觉效果上看,随着成像角度间隔的增加,三维重建方法获取的目标点云数目逐渐降低,但是在成像角度间隔小于20°时目标的整体结构均较为清晰,而在成像角度间隔为25°时,目标的稀疏点云结构缺失,而稠密重建方法仅恢复出目标的一个表面。
图 9 不同成像角度间隔下重建的目标稀疏点云 Fig. 9 Sparse point cloud reconstructed from images imaged with different angle separation
图选项



图 10 不同成像角度间隔下重建的目标稠密点云 Fig. 10 Dense point cloud reconstructed from images imaged with different angle separation
图选项


表 1给出了对目标稀疏点云及稠密点云的定量描述。在成像角度间隔为25°时,目标的稀疏点云个数及稠密点云个数急剧减少,已不能正确地表达目标的三维结构。
表 1 不同成像角度间隔下重建的稀疏点云及 稠密点云个数 Table 1 Number of sparse point clouds and dense point clouds reconstructed from images imaged with different angle separation
成像角度间隔/(°)510152025
稀疏点云个数12 0077 2264 6113 861538
稠密点云个数26 89923 19916 78817 1553 673

表选项


综上分析,可以得到如下结论:在对空间目标进行三维重建时,成像角度间隔对最后的重建结果影响较大,当成像角度间隔大于20°时,三维重建方法不能有效地恢复目标的三维结构,因此对目标进行绕飞成像时,成像角度间隔应小于20°。
2.2.2 鲁棒性选取成像角度间隔为10°的图像序列,分别添加方差为0.002、0.004、0.006、0.008和0.010的高斯白噪声生成噪声图像序列。同时由于太阳能帆板表面纹理匮乏,特征点检测算法将噪声检测为纹理从而影响了特征点匹配的正确性,因此考虑将所有噪声图像序列中的帆板去除,只对目标的本体部分进行三维重建。
图 11、图 12分别给出了进行稀疏重建得到的相机旋转角信息和角度误差的平均值随噪声的变化情况。可以看出,对于添加噪声的图像,相机旋转角误差值相对于无噪声图像明显增加,最大角度误差在6°左右;当噪声方差达到0.006时,恢复出的某些视点的旋转角误差明显增大,但角度误差平均值随噪声的变化较为平稳,说明方法在去除太阳能帆板后的图像序列上对噪声具有一定的鲁棒性。
图 11 不同噪声水平下的角度误差Fig. 11 Angle errors under different noise levels
图选项



图 12 不同噪声水平下的角度平均绝对误差 Fig. 12 Mean absolute errors on angle under different noise levels
图选项


2.2.3 地面实验图像上的测试结果图 13为对“神舟”飞船和“天宫一号”仿真图像序列进行稠密重建的结果。从图 13中可以看出,获取的神舟模型结构完整,细节清晰,而天宫模型则效果较差,这是由于天宫模型表面纹理不丰富,并且在成像时光照反射强烈,出现了过饱和的现象。
图 13 “神舟”飞船和“天宫一号”的稠密重建结果 Fig. 13 Dense reconstruction results of spacecraft Shenzhou and Tiangong-1
图选项


在地面拍摄的图像序列上进行的实验表明:三维重建方法能够有效地获取相机参数信息及目标的结构信息,同时光照条件及目标表面纹理的丰富程度对三维重建方法的影响较大。
3 结 论1) 在成像距离较近、图像分辨率较高的情况下,成像角度间隔是影响空间目标三维重建结果的主要因素。
2) 对仿真图像序列的实验表明,在成像角度间隔20°以下时,三维重建方法能够较好地恢复目标三维结构。
3) 噪声实验结果表明,三维重建方法对噪声有一定的鲁棒性。
4) 在地面实验图像序列上的实验表明,三维重建方法得到的相机参数信息准确,目标的三维模型结构完整、细节清晰。
总的来说,本文针对空间目标图像序列的三维重建问题,结合实验分析,给出了实现空间目标三维重建的边界条件,估计了目标成像时的相机位置信息、目标的稀疏点云及稠密点云,能够为空间目标的识别、测量等任务提供数据支撑,同时对天基监视系统的设计也具有一定的参考意义。
参考文献
[1] TOMASI C,KANADE T.Shape and motion from image streams under orthography:A factorization method[J].International Journal of Computer Vision,1992,9(2):137-154.
Click to display the text
[2] SHUM H Y,HAN M,SZELISKI R.Interactive construction of 3D models from panoramic mosaics[C]//CVPR '98 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,1998:427-433.
Click to display the text
[3] CIPOLLA R,ROBERTSON D,BOYER E.Photobuilder-3D models of architectural scenes from uncalibrated images[C]//IEEE International Conference on Multimedia Computing and Systems.Los Alamitos:IEEE Computer Society,1999,1:25-31.
Click to display the text
[4] PRITCHETT P,ZISSERMAN A.Matching and reconstruction from widely separated views[C]//Proceeding of the European Workshop on 3D Structure from Multiple Images of Large-Scale Environments.Berlin:Springer,1998:92.
Click to display the text
[5] FAUGERAS O,ROBERT L,LAVEAU S,et al.3-D reconstruction of urban scenes from image sequences[J].Computer & Image Understanding,1997,69(3):292-309.
Click to display the text
[6] NISTÉR D.Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors[C]//European Conference on Computer Vision 2000.Berlin:Springer,2000,1842:649-663.
Click to display the text
[7] NISTÉR D.Calibration with robust use of cheirality by quasi-affine reconstruction of the set of camera projection centres[C]//8th IEEE International Conference on Computer Vision(ICCV 2001).Los Alamitos:IEEE Computer Society,2001:116-123.
Click to display the text
[8] NISTÉR D.Frame decimation for structure and motion[C]//2nd European Workshop on 3D Structure from Multiple Images of Large-Scale Environments.Berlin:Springer,2000:17-34.
Click to display the text
[9] POLLEFEYS M,KOCH R,VERGAUWEN M,et al.Automated reconstruction of 3D scenes from sequences of images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2000,55(4):251-267.
Click to display the text
[10] POLLEFEYS M,GOOL L V,VERGAUWEN M,et al.Visual modeling with a hand-held camera[J].International Journal of Computer Vision,2004,59(3):207-232.
Click to display the text
[11] POLLEFEYS M,NISTÉR D,FRAHM J M,et al.Detailed real-time urban 3D reconstruction from video[J].International Journal of Computer Vision,2008,78(2-3):143-167.
Click to display the text
[12] SNAVELY N,SEITZ S M,SZELISKI R.Photo tourism:Exploring photo collections in 3D[J].ACM Transactions on Graphics,2006,25(3):835-846.
Click to display the text
[13] SNAVELY N,SEITZ S M,SZELISKI R.Modeling the world from internet photo collections[J].International Journal of Computer Vision,2008,80(2):189-210.
Click to display the text
[14] TRIGGS B,MCLAUCHLAN P F,HARTLEY R I,et al.Bundle adjustment:A modern synthesis[M]//TRIGGS B,ZISSERMAN A,SZELISKI R.Vision algorithms:Theory and practice.Berlin:Springer,2000:298-372.
[15] LOURAKIS M I A,ARGYROS A A.SBA:A software package for generic sparse bundle adjustment[J].ACM Transactions on Mathematical Software(TOMS),2009,36(1):1-30.
Click to display the text
[16] FURUKAWA Y,PONCE J.Accurate,dense,and robust multiview stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1362-1376.
Click to display the text
[17] 傅丹.基于直线特征的空间目标三维结构重建和位姿测量方法研究[D].长沙:国防科学技术大学,2008:17-126. FU D.Researches on three-dimensional structure reconstruction and pose measurements based on line feature for space targets[D].Changsha:National University of Defense Technology,2008:17-126(in Chinese).
Cited By in Cnki (12)
[18] 唐永鹤.基于序列图像的空间非合作目标三维重建关键技术研究[D].长沙:国防科学技术大学,2012:13-36. TANG Y H.Researches on 3D reconstruction technologies for non-cooperative space targets using image sequences[D].Changsha:National University of Defense Technology,2012:13-36(in Chinese).
Cited By in Cnki (0)
[19] 曾蔚,王汇源,刘莹奇,等.基于IR-SFS算法空间目标红外影像3D重建[J].中国光学,2014,7(3):376-388. ZENG W,WANG H Y,LIU Y Q,et al.3D reconstruction of space target IR image based on IR-SFS algorithm[J].Chinese Optics,2014,7(3):376-388(in Chinese).
Cited By in Cnki (4)
[20] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
Click to display the text
[21] FORSYTH D A,PONCE J.Computer vision:A modern approach[M].Upper Saddle River:Prentice-Hall,2003:294-299.
[22] SNAVELY N.Bundler:Structure from motion(SfM) for unordered image collectionshttp[EB/OL].(2014-11-17)[2015-02-10].http://www.cs.cornell.edu/-snavely/bundler/.
Click to display the text
[23] ZHANG W,JIANG Z G,LUO J W,et al.Optical image simulation system for space surveillance[C]//International Conference on Image and Graphics.Piscataway,NJ:IEEE Press,2013:721-726.
Click to display the text


相关话题/图像 空间 序列 信息 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 磁悬浮控制力矩陀螺热-结构耦合分析与研究
    ?磁悬浮控制力矩陀螺(MSCMG)是空间飞行器实现高精度姿态机动通常采用的惯性执行机构,具有转速高、输出力矩大以及寿命长等特点。磁悬浮控制力矩陀螺转子依靠磁轴承支承[1,2],并且在高速电机的驱动下持续高速旋转,陀螺在工作过程中电机与磁轴承会产生铁损与铜损,这些损耗最终转化为热量传递到陀螺其他结构部 ...
    本站小编 Free考研考试 2021-12-25
  • 确定飞机结构WFD平均行为的寿命升降法
    自1988年Aloha航空事故[1]以来,广布疲劳损伤(WidespreadFatigueDamage,WFD)问题引起了学术界和航空界的广泛关注。WFD是指多个相似或相同细节中同时出现尺寸和密度足够的裂纹,使结构的剩余强度不再满足美国联邦航空条例§25.571(b)的要求[2]。WFD包括2类情况 ...
    本站小编 Free考研考试 2021-12-25
  • 基于边缘信息的灰度目标跟踪算法
    ?目标成像跟踪作为近年来一个十分活跃的研究方向,在军事领域取得了广泛应用,如武器系统的末端制导、飞行器导引控制、光学和雷达图像侦察跟踪等.在军事领域中,灰度目标跟踪的目的是确定目标在图像序列中的位置和几何区域,以便于进一步实现目标识别或者目标拦截.灰度目标跟踪不同于彩色目标跟踪,主要原因在于这两种目 ...
    本站小编 Free考研考试 2021-12-25
  • 二维空间时间分数阶色散方程的差分方法
    ?分数阶偏微分方程模型在模拟许多复杂的物理现象中是非常有效的模型,在金融经济、半导体、生物、水文、控制理论等领域都有着重要的应用[1,2,3,4,5].例如分数阶扩散方程可描述反常扩散系统中的粒子输运现象[2,3],空间分数阶偏微分方程可用来模拟超扩散现象(系统中微粒子流的传播速率比传统的Brown ...
    本站小编 Free考研考试 2021-12-25
  • 基于像素间孤波的图像处理模型分析
    ?从算法来看,数字图像处理可以分为很多种,传统的方法如Mallat小波变换是将图像分为像素点来处理,现今用的较多的是利用偏微分方程将图像视为某种场或物理状态的演化进行处理.图像在采集、传输和存贮的过程中不可避免地会受到外界源的干扰而产生噪声,要想获得高质量的图像信息,滤除噪声是必不可少的步骤,而滤波 ...
    本站小编 Free考研考试 2021-12-25
  • 结构偏差对二维连续地月载荷转移系统动力学影响
    绳系卫星作为一种新型的卫星概念,经过数十年的研究历程,在航天领域扮演着十分重要的角色.绳系卫星具有诸多特点[1,2]:能够实现动量(能量)的传递[3,4,5],能够借助于电动绳的原理为卫星系统提供可再生的能源,能够实现对太空垃圾的捕获等[6,7].动量交换作为绳系的一个重要功能,其基本思想就是通过系 ...
    本站小编 Free考研考试 2021-12-25
  • 基于单视点调节相机模型的水下图像三维重构
    基于图像的三维重构研究如何从二维(2D)图像中恢复相机参数和三维场景几何信息,该过程是二维成像的逆过程[1].基于图像的三维重构可分解为相机外参(相机相对姿态)恢复和场景三维结构估计两个部分.假设相机的内部参数已知(现代相机内部参数易于查询),则可以从图像对应(imagecorrespondence ...
    本站小编 Free考研考试 2021-12-25
  • 地基激光清除空间碎片的策略
    随着人类空间活动的日益频繁,再加上空间事故的发生和废弃物的不当处理,产生了数量巨大、种类繁多的空间碎片,对航天器的寿命和安全带来了一定威胁.在这些空间碎片中,10cm量级以上的空间碎片数目相对较少,航天器可采取主动规避措施避免撞击;1cm量级以下的空间碎片虽然数目巨大,但是动能较小,航天器可采取结构 ...
    本站小编 Free考研考试 2021-12-25
  • 周期结构电磁特性在高频真空器件中的应用
    在行波类真空电子器件中,电子注和电磁波之间产生持续互作用的一个条件就是电磁波的相速小于光速,通常有两种方法来降低相速,一种是采用介质材料加载的波导,另一种就是采用周期性的金属或者介质结构.微波真空器件通常采用金属周期结构,其传输损耗比较小,可以维持较高的射频电场,还可以接收高频散焦等杂散电子注电流. ...
    本站小编 Free考研考试 2021-12-25
  • 受限空间中天线产生的电波覆盖研究
    受限空间包括有明确物理边界的地铁、隧道、矿井、飞机、轮船等有形通道,以及没有明确物理边界、但希望将电磁波限制在一定范围内传播的高速铁路、高速公路、地上城铁等无形通道.有形边界通道称为硬边界受限空间,无形电波通道称为软边界受限空间,但不管是硬边界还是软边界受限空间,无线通信是保障其中移动载体安全运行、 ...
    本站小编 Free考研考试 2021-12-25