删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解

本站小编 Free考研考试/2021-12-27

具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解 刘佳长安大学理学院 西安 710064 Cylindrically Symmetric Traveling Fronts for Nonlocal Delayed Diffusion Equation with Bistable Nonlinearity Jia LIUSchool of Science, Chang'an University, Xi'an 710064, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了非局部时滞扩散方程柱状对称波前解的存在性和定性性质.最近,非局部时滞扩散方程的V形行波解和棱锥形行波解已经有了研究结果.利用棱锥形波前解序列的极限,我们建立了柱状对称波前解的存在性和定性性质,也证明了其水平集的渐近行为和柱状对称行波解的不存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-14
MR (2010):O175.2
基金资助:国家自然科学基金(11701041);长安大学中央高校基本科研业务费专项资金(300102129201)
作者简介: 刘佳,E-mail:liujia@chd.edu.cn
引用本文:
刘佳. 具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解[J]. 数学学报, 2021, 64(4): 587-600. Jia LIU. Cylindrically Symmetric Traveling Fronts for Nonlocal Delayed Diffusion Equation with Bistable Nonlinearity. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 587-600.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/587


[1] Aronson D. G., Weinberger H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 1978, 30:33-76.
[2] Bao X., Huang W. H., Traveling curved front of bistable reaction-diffusion equations with delay, E. J. Differential Equations, 2015, 252:1-17.
[3] Bao X., Liu J., Pyramidal traveling fronts in a nonlocal delayed diffusion equation, J. Math. Anal. Appl., 2018, 463:294-313.
[4] Bao X., Wang Z. C., Pyramidal traveling front of bistable reaction-diffusion equations with delay, Ann. of Diff. Eqs., 2014, 30:127-136.
[5] Bao X., Li W. T., Wang Z. C., Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 2020, 19:253-277.
[6] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 1999, 31:80-118.
[7] Bu Z. H., Wang Z. C., Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 2016, 15:139-160.
[8] Faria T., Huang W., Wu J., Traveling waves for delayed reaction diffusion equations with nonlocal reponse, Proc. R. Soc. Lond. Ser. A, 2006, 462:229-261.
[9] Gibarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
[10] Gourley S. A., Ruan S., Convergence and travelling fronts in functional differential equations with nonlocal terms:a competition model, SIAM J. Math. Anal., 2003, 35:806-822.
[11] Gourley S. A., So J. H. W., Wu J., Non-locality of reaction-diffusion equations induced by delay:biological modeling and nonlinear dynamics, J. Math. Sci., 2004, 124:5119-5153.
[12] Hamel F., Monneau R., Roquejoffre J. M., Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 2005, 13:1069-1096.
[13] Hamel F., Monneau R., Roquejoffre J. M., Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 2006, 14:75-92.
[14] Kurokawa Y., Taniguchi M., Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 2011, 141:1031-1054.
[15] Ma S., Wu J., Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dynam. Differential Equations, 2007, 19:391-436.
[16] Liu J., Asymptotic stability of pyramidal traveling front for nonlocal delayed diffusion equation, submitted.
[17] Ninomiya H., Taniguchi M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 2005, 213:204-233.
[18] Ninomiya H., Taniguchi M., Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 2006, 15:819-832.
[19] Sheng W. J., Li W. T., Wang Z. C., Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 2012, 252:2388-2424.
[20] Sheng W. J., Li W. T., Wang Z. C., Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 2013, 56:1969-1982.
[21] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in RN, Applied Mathematics Letters, 2016, 54:22-30.
[22] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in R3, Annali di Matematica, 2017, 196:617-639.
[23] So J. W. H., Wu J., Zou X., A reaction-diffusion model for a single species with age structure. I. Traveling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 2001, 457:1841-1853.
[24] Taniguchi M., Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 2007, 39:319-344.
[25] Taniguchi M., The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 2009, 246:2103-2130.
[26] Taniguchi M., Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 2012, 32:1011-1046.
[27] Taniguchi M., An (N - 1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 2015, 47:455-476.
[28] Taniguchi M., Convex compact sets in RN-1 give traveling fronts of cooperative-diffusion system in RN, J. Differential Equations, 2016, 260:4301-4338.
[29] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2019, 36:1791-1816.
[30] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Doi:10.3934/dcds.2020126.
[31] Wang Z. C., Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 2012, 32:2339-2374.
[32] Wang Z. C., Li W. T., Ruan S., Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 2007, 238:153-200.
[33] Wang Z. C., Li W. T., Ruan S., Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 2009, 361:2047-2084.
[34] Wang Z. C., Wu J., Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 2011, 250:3196-3229.
[35] Wang Z. C., Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 2015, 145:1053-1090.
[36] Wang Z. C., Bu Z. H., Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 2016, 260:6405-6450.
[37] Wang Z. C., Li W. T., Ruan S., Existence, uniqueness and stability of pyramidal traveling fronts in bistable reaction-diffusion systems, Sci. China Math., 2016, 59:1869-1908.
[38] Wu J., Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119, Springer-Verlag, New York. 1996.

[1]尚朝阳, 任凯芳, 唐福全. 粘性依赖于温度的MHD方程组整体经典解的正则性[J]. 数学学报, 2021, 64(1): 1-40.
[2]徐家发, 刘立山, 蒋继强. 分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性[J]. 数学学报, 2020, 63(3): 209-220.
[3]叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938.
[4]王壮壮, 曾小雨. 一类p-Kirchhoff方程基态解的存在性与唯一性[J]. 数学学报, 2019, 62(6): 879-888.
[5]李彬, 朱世辉. 具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性[J]. 数学学报, 2019, 62(5): 745-764.
[6]陈志红, 李东升. 关于电磁场方程组解的W1,p正则性研究[J]. 数学学报, 2019, 62(3): 381-390.
[7]李晓光, 张健, 岳仲涛. 广义Davey——Stewartson系统驻波的强不稳定性[J]. 数学学报, 2018, 61(3): 375-382.
[8]林勇, 刘双. 图上曲率维数不等式的若干等价性质[J]. 数学学报, 2018, 61(3): 431-440.
[9]南志杰, 吴刚. 三维广义磁流体方程组解的最优衰减率[J]. 数学学报, 2018, 61(1): 1-18.
[10]敖继军, 薄芳珍. 带谱参数边界条件的四阶边值问题的矩阵表示[J]. 数学学报, 2017, 60(3): 427-438.
[11]薛晓琳, 刘存明. 拟线性双曲型方程组Cauchy问题行波解的稳定性[J]. 数学学报, 2016, 59(6): 745-760.
[12]刘见礼, 张小丹. 双层浅水波模型柯西问题的经典解[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 985-992.
[13]王剑苹, 吴少华. 趋化运动双曲模型弱解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 993-1000.
[14]王家林, 廖冬妮. Carnot群上的Hardy型不等式和唯一延拓性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 577-584.
[15]代丽美. 外区域上的抛物型Monge—Ampère方程[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 447-456.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23796
相关话题/数学 电磁场 理学院 序列 长安大学