摘要本文研究了非局部时滞扩散方程柱状对称波前解的存在性和定性性质.最近,非局部时滞扩散方程的V形行波解和棱锥形行波解已经有了研究结果.利用棱锥形波前解序列的极限,我们建立了柱状对称波前解的存在性和定性性质,也证明了其水平集的渐近行为和柱状对称行波解的不存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-05-14 | | 基金资助:国家自然科学基金(11701041);长安大学中央高校基本科研业务费专项资金(300102129201)
| 作者简介: 刘佳,E-mail:liujia@chd.edu.cn |
[1] Aronson D. G., Weinberger H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 1978, 30:33-76. [2] Bao X., Huang W. H., Traveling curved front of bistable reaction-diffusion equations with delay, E. J. Differential Equations, 2015, 252:1-17. [3] Bao X., Liu J., Pyramidal traveling fronts in a nonlocal delayed diffusion equation, J. Math. Anal. Appl., 2018, 463:294-313. [4] Bao X., Wang Z. C., Pyramidal traveling front of bistable reaction-diffusion equations with delay, Ann. of Diff. Eqs., 2014, 30:127-136. [5] Bao X., Li W. T., Wang Z. C., Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 2020, 19:253-277. [6] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 1999, 31:80-118. [7] Bu Z. H., Wang Z. C., Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 2016, 15:139-160. [8] Faria T., Huang W., Wu J., Traveling waves for delayed reaction diffusion equations with nonlocal reponse, Proc. R. Soc. Lond. Ser. A, 2006, 462:229-261. [9] Gibarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. [10] Gourley S. A., Ruan S., Convergence and travelling fronts in functional differential equations with nonlocal terms:a competition model, SIAM J. Math. Anal., 2003, 35:806-822. [11] Gourley S. A., So J. H. W., Wu J., Non-locality of reaction-diffusion equations induced by delay:biological modeling and nonlinear dynamics, J. Math. Sci., 2004, 124:5119-5153. [12] Hamel F., Monneau R., Roquejoffre J. M., Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 2005, 13:1069-1096. [13] Hamel F., Monneau R., Roquejoffre J. M., Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 2006, 14:75-92. [14] Kurokawa Y., Taniguchi M., Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 2011, 141:1031-1054. [15] Ma S., Wu J., Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dynam. Differential Equations, 2007, 19:391-436. [16] Liu J., Asymptotic stability of pyramidal traveling front for nonlocal delayed diffusion equation, submitted. [17] Ninomiya H., Taniguchi M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 2005, 213:204-233. [18] Ninomiya H., Taniguchi M., Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 2006, 15:819-832. [19] Sheng W. J., Li W. T., Wang Z. C., Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 2012, 252:2388-2424. [20] Sheng W. J., Li W. T., Wang Z. C., Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 2013, 56:1969-1982. [21] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in RN, Applied Mathematics Letters, 2016, 54:22-30. [22] Sheng W. J., Time periodic traveling curved fronts of bistable reaction-diffusion equations in R3, Annali di Matematica, 2017, 196:617-639. [23] So J. W. H., Wu J., Zou X., A reaction-diffusion model for a single species with age structure. I. Traveling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 2001, 457:1841-1853. [24] Taniguchi M., Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 2007, 39:319-344. [25] Taniguchi M., The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 2009, 246:2103-2130. [26] Taniguchi M., Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 2012, 32:1011-1046. [27] Taniguchi M., An (N - 1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 2015, 47:455-476. [28] Taniguchi M., Convex compact sets in RN-1 give traveling fronts of cooperative-diffusion system in RN, J. Differential Equations, 2016, 260:4301-4338. [29] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2019, 36:1791-1816. [30] Taniguchi M., Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Doi:10.3934/dcds.2020126. [31] Wang Z. C., Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 2012, 32:2339-2374. [32] Wang Z. C., Li W. T., Ruan S., Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 2007, 238:153-200. [33] Wang Z. C., Li W. T., Ruan S., Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 2009, 361:2047-2084. [34] Wang Z. C., Wu J., Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 2011, 250:3196-3229. [35] Wang Z. C., Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 2015, 145:1053-1090. [36] Wang Z. C., Bu Z. H., Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 2016, 260:6405-6450. [37] Wang Z. C., Li W. T., Ruan S., Existence, uniqueness and stability of pyramidal traveling fronts in bistable reaction-diffusion systems, Sci. China Math., 2016, 59:1869-1908. [38] Wu J., Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119, Springer-Verlag, New York. 1996.
|
[1] | 尚朝阳, 任凯芳, 唐福全. 粘性依赖于温度的MHD方程组整体经典解的正则性[J]. 数学学报, 2021, 64(1): 1-40. | [2] | 徐家发, 刘立山, 蒋继强. 分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性[J]. 数学学报, 2020, 63(3): 209-220. | [3] | 叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938. | [4] | 王壮壮, 曾小雨. 一类p-Kirchhoff方程基态解的存在性与唯一性[J]. 数学学报, 2019, 62(6): 879-888. | [5] | 李彬, 朱世辉. 具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性[J]. 数学学报, 2019, 62(5): 745-764. | [6] | 陈志红, 李东升. 关于电磁场方程组解的W1,p正则性研究[J]. 数学学报, 2019, 62(3): 381-390. | [7] | 李晓光, 张健, 岳仲涛. 广义Davey——Stewartson系统驻波的强不稳定性[J]. 数学学报, 2018, 61(3): 375-382. | [8] | 林勇, 刘双. 图上曲率维数不等式的若干等价性质[J]. 数学学报, 2018, 61(3): 431-440. | [9] | 南志杰, 吴刚. 三维广义磁流体方程组解的最优衰减率[J]. 数学学报, 2018, 61(1): 1-18. | [10] | 敖继军, 薄芳珍. 带谱参数边界条件的四阶边值问题的矩阵表示[J]. 数学学报, 2017, 60(3): 427-438. | [11] | 薛晓琳, 刘存明. 拟线性双曲型方程组Cauchy问题行波解的稳定性[J]. 数学学报, 2016, 59(6): 745-760. | [12] | 刘见礼, 张小丹. 双层浅水波模型柯西问题的经典解[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 985-992. | [13] | 王剑苹, 吴少华. 趋化运动双曲模型弱解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 993-1000. | [14] | 王家林, 廖冬妮. Carnot群上的Hardy型不等式和唯一延拓性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 577-584. | [15] | 代丽美. 外区域上的抛物型Monge—Ampère方程[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 447-456. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23796
一个实现包含圈C3,...,Cl可图序列问题的渐近解李光明,尹建华海南大学理学院海口570228AsymptoticSolutiontoaProblemaboutGraphicSequenceswithaRealizationContainingCyclesC3,...,ClGuangMingLI, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类基于量子程序理论的序列效应代数李午栋1,张颖2,贺衎31太原理工大学数学学院太原030024;2太原理工大学信息与计算机学院太原030024;3太原理工大学数学学院&信息与计算机学院&软件学院太原030024ASub-sequentialEffectAlgebrafromtheQuantumPr ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27关于电磁场方程组解的W1,p正则性研究陈志红,李东升西安交通大学数学与统计学院西安710049OnW1,pRegularityofASystemArisingfromElectromagneticFieldsZhiHongCHEN,DongShengLISchoolofMathematicsandS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类新的广义割圆序列的线性复杂度及其自相关值刘华宁,陈晓林西北大学数学学院西安710127AutocorrelationValuesandLinearComplexityofNewGeneralizedCyclotomicSquencesHuaNingLIU,XiaoLinCHENSchoolofM ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27随机变量序列加权和的一般Davis-Gut律李炜1,陈平炎21仲恺农业工程学院计算科学学院,广州510225;2暨南大学数学系,广州510630GeneralizedDavis-GutLawforWeightedSumsofRandomVariablesLIWei1,ChenPingyan21Col ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27条件PA序列的条件H-R型不等式及其应用冯德成,李琴社,王英西北师范大学数学与统计学院,兰州730070TheConditionalHjek-Rnyi-typeInequalitiesforConditionalPASequencesandtheirApplicationFENGDecheng,LI ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法王福胜1,高娟2,赵媛璐3,姜合峰31.太原师范学院数学系,晋中030619;2.河北工业大学控制科学与工程学院,天津300401;3.太原师范学院数学系,晋中030619ANorm-relaxedSQPAlgorithmwithaSy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27I.I.D.序列最大部分和的精确渐近性朱震,赵月旭杭州电子科技大学经济学院,杭州310018PreciseAsymptoticsforMaximalPartialSumsofI.I.D.SequencesZHUZhen,ZHAOYuexuCollegeofEconomics,HangzhouDian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27自回归序列的穿带率王昕,程希明北京信息科技大学理学院,北京100192TheBand-crossingRateofPth-oraerAutoregressiveProcessesWANGXin,CHENGXimingSchoolofScience,BeijingInformationSciencea ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|