删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

自仿地毯上的平均测地距离

本站小编 Free考研考试/2021-12-27

自仿地毯上的平均测地距离 顾江文, 王松静, 赵璐铭, 奚李峰宁波大学数学系 宁波 315211 Average Geodesic Distance of a Self-affine Carpet Jiang Wen GU, Song Jing WAN, G Lu Ming ZHAO, Li Feng XIDepartment of Mathematics, Ningbo University, Ningbo 315211, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要Bedford-McMullen地毯在分形几何的研究中占有重要地位.尽管该自仿分形缺乏自相似性,我们利用有限模式技术,得到了Bedford-McMullen地毯上的平均测地距离.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-06-20
MR (2010):O174.12
基金资助:国家自然科学基金(11831007,11771226,11371329,11471124);教育部新世纪优秀人才支持计划;浙江省哲学社会科学规划课题(17NDJC108YB)以及宁波大学王宽诚幸福基金资助项目
通讯作者:奚李峰,E-mail:xilifeng@nbu.edu.cnE-mail: xilifeng@nbu.edu.cn
作者简介: 顾江文,E-mail:1811071001@nbu.edu.cn;王松静,E-mail:wangsongjing@nbu.edu.cn;赵璐铭,E-mail:146330645@nbu.edu.cn
引用本文:
顾江文, 王松静, 赵璐铭, 奚李峰. 自仿地毯上的平均测地距离[J]. 数学学报, 2021, 64(4): 669-676. Jiang Wen GU, Song Jing WAN, G Lu Ming ZHAO, Li Feng XI. Average Geodesic Distance of a Self-affine Carpet. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 669-676.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/669


[1] Bedford T., Crinkly curves, Markov partitions and box dimension in self-similar sets, Ph.D. Thesis, University of Warwick, 1984.
[2] Bonchev D., Rouvray D. H., Chemical Graph Theory:Introduction and Fundamentals, Gordon and Breach Science Publishers, New York, 1991.
[3] Dai M. F., Ye D. D., Hou J., et al., Scaling of average weighted receiving time on double-weighted Koch networks, Fractals, 2015, 23(2):1550011, 7 pp.
[4] Hino M., Geodesic distances and intrinsic distances on some fractal sets, Publ. Res. Inst. Math. Sci., 2013, 50(2):181-205.
[5] Hua B. B., Lin Y., Stochastic completeness for graphs with curvature dimension conditions, Adv. Math., 2017, 306:279-302.
[6] Huang D. W., Yu Z. G., Anh V., Multifractal analysis and topological properties of a new family of weighted Koch networks, Phys. A, 2017, 469:695-705.
[7] Kigami J., Analysis on Fractals, Cambridge Tracts in Math. 143, Cambridge Univ. Press, Cambridge, 2001.
[8] Lapidus M., Sarhad J., Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets, J. Noncommut. Geom., 2014, 8(4):947-985.
[9] Li Y. M., Xi L. F., Manhattan property of geodesic paths on self-affine carpets, Arch. Math., 2018, 111(3):279-285.
[10] McMullen C., The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., 1984, 96:1-9.
[11] Sun Y., Dai M. F., Sun Y. Q., et al., Scaling of the average receiving time on a family of weighted hierarchical networks, Fractals, 2016, 24(3):1650038, 8 pp.
[12] Wang S. J., Yu Z. Y., Xi L. F., Average geodesic distance of Sierpinksi gasket amd Sierpinski networks, Fractals, 2017, 25(5):17500448 pp.
[13] Watts D. J., Strogatz S. H., Collective dynamics of ‘small-world’ networks, Nature, 1998, 393:440-442.
[14] Wiener H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 1947, 69:17-20.

[1]王松静, 赵璐铭, 陈超, 奚李峰. 分形花及其网络上的平均测地距离[J]. 数学学报, 2018, 61(5): 857-864.
[2]梁永顺. 具有无界变差的连续函数研究进展[J]. 数学学报, 2016, 59(2): 215-232.
[3]吕凡, 熊瑛, 奚李峰. 分形集的拟一致不连通性[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 521-528.
[4]王宏勇, 杨守志. 具有变量自由参数的分形插值曲面的构造与性质[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 223-234.
[5]姚奎, 梁永顺, 苏维宜, 姚泽清. 自仿函数分数阶导数的分形维数[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 693-698.
[6]汪沁. 莫朗集的拟Lipschitz等价[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 187-196.
[7]龙伦海, 毕红兵, 黄玲. S0-类函数的积分性质及其在分形中的应用[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 641-648.
[8]张瑞凤, 寇汴闽. 非线性光学中薛定谔型方程的整体吸引子[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 17-26.
[9]梁永顺, 苏维宜. Koch曲线及其分数阶微积分[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 227-240.
[10]龙伦海, 黄玲, 毕红兵. 函数系矩阵生成的分形完备簇的豪斯夺夫维数和盒维数[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 137-146.
[11]王宏勇, 樊昭磊. 具有函数纵向尺度因子的分形插值函数的分析特性[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 147-158.
[12]陈咸存, 奚李峰. 齐次均匀Moran集的拟Lipschitz等价[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 733-740.
[13]王健;陈密;. 布朗单样本轨道的粗糙重分形分析[J]. Acta Mathematica Sinica, English Series, 2009, (03): 147-154.
[14]奚李峰;阮火军;. 强分离条件下自相似集的Lipschitz等价[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 493-500.
[15]郭秋丽; 奚李峰. Whitney集与图递归弧[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 25-32.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23802
相关话题/数学 宁波大学 分数 光学 数学系