删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类量子Markov半群的超压缩性与对数Sobolev不等式

本站小编 Free考研考试/2021-12-27

一类量子Markov半群的超压缩性与对数Sobolev不等式 张伦传中国人民大学数学学院 北京 100080 Hypercontractivity of a Class of Quantum Markov Semigroups and Logarithmic Sobolev Inequality Lun Chuan ZHANGSchool of Mathematics, Renmin University of China, Beijing 100080, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(454 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文在有限von Neumann代数生成的非交换概率空间Lpp ≥ 1)框架下,证明了一类量子Markov半群的超压缩性等价于其对应的Dirichlet型满足对数Sobolev不等式.此结果包含前人的相关成果为特例.作为推论,细化了Biane的相关工作.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-03-04
MR (2010):O177.5
作者简介: 张伦传,E-mail:zhanglc@ruc.edu.cn
引用本文:
张伦传. 一类量子Markov半群的超压缩性与对数Sobolev不等式[J]. 数学学报, 2020, 63(2): 149-156. Lun Chuan ZHANG. Hypercontractivity of a Class of Quantum Markov Semigroups and Logarithmic Sobolev Inequality. Acta Mathematica Sinica, Chinese Series, 2020, 63(2): 149-156.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I2/149


[1] Albeverio S., Høegh-Krohn R., Dirichlet forms and Markov semigroups on C*-algebras, Comm. Math. Phys., 1975, 77:91-102.
[2] Ben-Aroya A., Regev O., de Wolf R., A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDC, IEEE Symposium on Foundations of Computer Science (FOCS), 2008:477-486.
[3] Biane P., Free hypercontractivity, Comm. Math. Phys., 1997, 184:457-474.
[4] Bo?ejko M., Kümmerer B., Speicher R., q-Gaussian processes:Non-commutative and classical aspects, Comm. Math. Phys., 1997, 185:129-154.
[5] Bo?ejko M., Speicher R., An example of a generalized Brownian motion, Comm. Math. Phys., 1991, 137:519-531.
[6] Bo?ejko M., Speicher R., Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann., 1994, 300:97-120.
[7] Carlen E. A., Lieb E. H., Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys., 1993, 155:27-46.
[8] Carbone R., Sasso E., Hypercontractivity for a quantum Ornstein-Uhlenbeck semigroup, J. Funct. Anal., Probab. Theory Relat. Fields, 2008, 140:505-522.
[9] Cipriani F., Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal., 1997, 147:259-300.
[10] Davies E. B., Lindsay J. M., Non-commutative symmetric Markov semigroups, Math. Z., 1992, 210:379-411.
[11] Franz U., Hong G. X., Ulrich F. M., Zhang H. N., Hypercontractivity of heat semigroups on free quantum groups, J. Operator Theory, 2002, 55(3):520-530.
[12] Fuglede B., Kadison R. V., Determinant theory in finite factors, Ann. of Math., 2017, 77(1):61-76.
[13] Gross L., Logarithmic Sobolev inequalities, Amer. J. Math., 1975, 97:1061-1083.
[14] Gross L., Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J., 1975, 43:383-396.
[15] Junge M., Palazuelos C., Parcbt J., et al., Hypercontractivity for free products, Ann. Sci. Ecole. Norm. Sup., 2015, 48(4):861-889.
[16] Kosaki H., Applications of uniform convexity of noncommutative Lp spaces, Trans. of the AMS., 1984, 283(1):265-282.
[17] Nelson E., A quartic interaction in two dimensions, Mathematical Theory of Elementary Particles, M.I.T. Press, 1965:67-73.
[18] Nielsen M., Chuang L., Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000
[19] Ricard E., Xu Q. H., A noncommutative martingale convexity inequality, Annals of Probability, 2016, 44(2):867-882.
[20] Zhang L. C., Guo M. Z., The characterization of a class of quantum Markov semigroups and the associated operator-valued Dirichlet forms based on Hilbert C*-module l2(A), Science China Mathematics, 2014, 57(2):377-387.

[1]林清春. 离散型p次Dirichlet型第一特征值[J]. 数学学报, 2018, 61(6): 951-962.
[2]公超, 林勇. 无界拉普拉斯算子下图上的泛函不等式[J]. 数学学报, 2018, 61(3): 503-510.
[3]李珂陈化. 一类无穷阶退化抛物方程解的存在性[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1089-109.
[4]陈木法. 直线上函数的Banach空间的Poincaré型不等式的变分公式[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 209-220.
[5]张学军. C~n中单位球上一些全纯函数空间的刻画[J]. Acta Mathematica Sinica, English Series, 2004, 47(5): 993-100.
[6]胡鹏彦;史济怀. Dirichlet型空间上的乘子[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 325-332.
[7]杨庆季. Dirichlet 型与反射扩散过程[J]. Acta Mathematica Sinica, English Series, 1992, 35(2): 240-250.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23574
相关话题/空间 数学 过程 工作 中国人民大学