删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

齐次完全集的拟对称极小性

本站小编 Free考研考试/2021-12-27

齐次完全集的拟对称极小性 肖映青, 张展旗湖南大学数学与计量经济学院 长沙 410082 On the Quasisymmetric Minimality of Homogeneous Perfect Sets Ying Qing XIAO, Zhan Qi ZHANGCollege of Mathematics and Econometrics, Hunan University, Changsha 410082, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(596 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要作为Cantor型集的推广,文志英和吴军引入了齐次完全集的概念,并基于齐次完全集的基本区间的长度以及基本区间之间的间隔的长度,得到了齐次完全集的Hausdorff维数.本文研究齐次完全集的拟对称极小性,证明在某些条件下Hausdorff维数为1的齐次完全集是1维拟对称极小的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-02-18
MR (2010):O174.12
基金资助:国家自然科学基金资助项目(11301165,11571099)
通讯作者:张展旗E-mail: rateriver@sina.com
作者简介: 肖映青,E-mail:ouxyq@hnu.edu.cn
引用本文:
肖映青, 张展旗. 齐次完全集的拟对称极小性[J]. 数学学报, 2019, 62(4): 573-590. Ying Qing XIAO, Zhan Qi ZHANG. On the Quasisymmetric Minimality of Homogeneous Perfect Sets. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 573-590.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/573


[1] Dai Y. X., Wen Z. X., Xi L. F., et al., Quasisymmetrically minimal Moran sets and Hausdorff dimension, Ann. Acad. Sci. Fenn. Math., 2011, 36:139-152.
[2] Falconer K. J., Fractal Geometry:Mathematical Foundations and Applications, John Wiley, New Jersey, 1990.
[3] Gehring F. W., Väisälä J., Hausdorff dimension and quasiconformal mappings, J. London Math. Soc., 1973, 6:504-512.
[4] Hakobyan H. A., Cantor sets which are minimal for quasi-symmetric mappings, J. Contemp. Math. Anal., 2006, 41(2):13-21.
[5] Hu M. D., Wen S. Y., Quasisymmetrically minimal uniform Cantor sets, Topol. Appl., 2008, 155:515-521.
[6] Mattila P., Fourier Analysis and Hausdorff Dimension, Cambridge University Press, Cambridge, 2015.
[7] Staples S., Ward L., Quasisymmetrically thick sets, Ann. Acad. Sci. Fenn. Math., 1998, 23:151-168.
[8] Tukia P., Hausdorff dimension and quasisymmetrical mappings, Math. Scand., 1989, 65:152-160.
[9] Wen Z. Y., Wu J., Hausdorff dimension of homogeneous perfect sets, Acta. Math. Hungar., 2005, 107:35-44.
[10] Wu J. M., Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math., 1993, 18:77-91.
[11] Wang W., Wen S. Y., On quasisymmetric minimality of Cantor sets, Topol. Appl., 2014, 178:300-314.
[12] Xiao Y. Q., Quasisymmetrically minimal homogeneous perfect sets, Acta Math. Sinica, Chin. Ser., 2013, 56:527-536.
[13] Yang J. J., Wu M., Li Y. Z., On quasisymmetric minimality of homogeneous perfect sets, Fractals., 2018, 26:1850010(10 pages).

[1]肖映青. 拟对称极小的齐次完全集[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 527-536.
[2]陈克应;方爱农. Q-正则Loewner空间中的拟对称映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(3): 581-590.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23449
相关话题/数学 空间 经济学院 湖南大学 本文