删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Gorenstein平坦模与Frobenius扩张

本站小编 Free考研考试/2021-12-27

Gorenstein平坦模与Frobenius扩张 任伟重庆师范大学数学科学学院 重庆 401331 Gorenstein Flat Modules and Frobenius Extensions Wei RENSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(418 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要RA是环的Frobenius扩张,其中A是右凝聚环,M是任意左A-模.首先证明了AM是Gorenstein平坦模当且仅当M作为左R-模也是Gorenstein平坦模.其次,证明了Nakayama和Tsuzuku关于平坦维数沿着Frobenius扩张的传递性定理的“Gorenstein版本”:若AM具有有限Gorenstein平坦维数,则GfdAM)=GfdRM).此外,证明了若RS是可分Frobenius扩张,则任意A-模(不一定具有有限Gorenstein平坦维数),其Gorenstein平坦维数沿着该环扩张是不变的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-07-30
MR (2010):O154.2
基金资助:国家自然科学基金资助项目(11871125)重庆市自然科学基金(cstc2018jcyjAX0541)及市教委科学技术研究项目(KJQN201800509)
作者简介: 任伟,E-mail:wren@cqnu.edu.cn
引用本文:
任伟. Gorenstein平坦模与Frobenius扩张[J]. 数学学报, 2019, 62(4): 647-652. Wei REN. Gorenstein Flat Modules and Frobenius Extensions. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 647-652.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/647


[1] Auslander M., Bridger M., Stable Module Category, Mem. Amer. Math. Soc. 94, 1969.
[2] Chen X. W., Totally reflexive extensions and modules, J. Algebra, 2013, 379:322-332.
[3] Christensen L. W., Gorenstein Dimensions, Lecture Notes in Mathematics Vol.1747, Springer-Verlag, Berlin, 2000.
[4] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics No.30, Walter De Gruyter, New York, 2000.
[5] Enochs E. E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 1993, 10:1-9.
[6] Happel D., On Gorenstein Algebras, In:Representation Theory of Finite Groups and Finite-dimensional Algebras, Progress in Math., vol 95, Birkhäuser, Basel, 1991, pp. 389-404.
[7] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189:167-193.
[8] Huang Z. Y., Sun J. X., Invariant properties of representations under excellent extensions, J. Algebra, 2012, 358:87-101.
[9] Kadison L., New Examples of Frobenius Extensions, Univ. Lecture Ser., Vol. 14, Amer. Math. Soc., Providence, RI, 1999.
[10] Kasch F., Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann., 1954, 127:453-474.
[11] Li F., Sun L. G., Derived representation type and Gorenstein projective modules of an algebra under crossed product, Sci. China Ser. A, 2013, 56:531-540.
[12] Liu Z. K., Excellent extensions and homological dimensions, Comm. Algebra, 1994, 22:1741-1745.
[13] Mao L. X., Ding N. Q., The cotorsion dimension of modules and rings, Lecture Notes Pure Appl. Math., Abelian groups, rings, modules and homological algebra, 2005, 249:217-233.
[14] Morita K., Adjoint pairs of functors and Frobenius extensions, Sc. Rep. T.K.D. Sect., 1965, 9:40-71.
[15] Nakayama T., Tsuzuku T., On Frobenius extensions I, Nagoya Math. J., 1960, 17:89-110; On Frobenius extensions Ⅱ, Nagoya Math J., 1961, 19:127-148.
[16] Ren W., Gorenstein projective modules and Frobenius extensions, Sci. China Math., 2018, 61(7):1175-1186.
[17] Rotman J., An Introduction to Homological Algebra, Academic Press, London, 1979.
[18] Zhao Z. B., Gorenstein homological invariant properties under Frobenius extensions, arXiv:1712.09111.

[1]张辉;王志玺. 模任意子Hopf代数的商余代数的诱导作用[J]. Acta Mathematica Sinica, English Series, 2002, 45(3): 589-592.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23455
相关话题/代数 数学 重庆师范大学 重庆 科学学院