删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

对偶平坦(α,β)-度量的共形不变性

本站小编 Free考研考试/2021-12-27

对偶平坦(α,β)-度量的共形不变性 程新跃1, 黄勤荣2, 吴莎莎21 重庆师范大学数学科学学院 重庆 401331;
2 重庆理工大学理学院 重庆 400054 The Conformal Invariances of the Dually Flat (α, β)-metrics Xin Yue CHENG1, Qin Rong HUANG2, Sha Sha WU21 School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China;
2 School of Sciences, Chongqing University of Technology, Chongqing 400054, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(525 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了两个(α,β)-度量之间的共形变换.证明了:若F是一个局部对偶平坦的正则(α,β)-度量且与度量F共形相关,即F=eσ(xF,那么度量F也是一个局部对偶平坦的(α,β)-度量当且仅当共形变换是一个位似.进一步,在度量具有奇异性的情形,我们证明了两个局部对偶平坦广义Kropina度量之间的任一共形变换必然是一个位似.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-03
MR (2010):O186.14
基金资助:国家自然科学基金资助项目(11871126,11371386);重庆师范大学科学基金(17XLB022)
作者简介: 程新跃,E-mail:chengxy@cqnu.edu.cn;黄勤荣,E-mail:328705667@qq.com;吴莎莎,E-mail:1034423536@qq.com
引用本文:
程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408. Xin Yue CHENG, Qin Rong HUANG, Sha Sha WU. The Conformal Invariances of the Dually Flat (α, β)-metrics. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 397-408.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I3/397


[1] Amari S. I., Differential-Geometrical Metholds in Statistics, Springer Lecture Notes in Statistics, Vol. 28, Springer-Verlag, Berlin, 1985.
[2] Amari S. I., Nagaoka H., Methods of Information Geometry, AMS Translation of Math. Monographs, Vol. 191, Oxford University Press, 2000.
[3] Antonelli P. L., Ingarden R. S., Matsumoto M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
[4] Bácsó S., Cheng X., Finsler conformal transformations and the curvature invariances, Publicationes Mathematicae Debrecen, 2007, 70(1/2):221-231.
[5] Cheng X., On (α, β)-metrics of scalar flag curvature with constant S-curvature, Acta Mathematica Sinica, 2010, 26(9):1701-1708.
[6] Chen G., Cheng X., Zou Y., On conformal transformations between two (α, β)-metrics, Differential Geometry and Its Applications, 2013, 31(2):300-307.
[7] Cheng X., Shen Z., Zou Y., On locally dually flat Finsler metrics, International Journal of Mathematics, 2010, 21(11):1531-1543.
[8] Chern S. S., Shen Z., Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol.6, World Scientific, Singapore, 2005.
[9] Fefferman C., Graham C. R., The Ambient Metric, Princeton University Press, Princeton and Oxford, 2012.
[10] Li B., On dually flat Finsler metrics, Differential Geometry and Its Applications, 2013, 31(6):718-724.
[11] Matsumoto M., Finsler Geometry in the 20th-Century, Handbook of Finsler Geometry, Edited by P. L. Antonelli, Kluwer Academic Publishers, Dordrecht, 2004.
[12] Matsumoto M., Hōjō S. I., A conclusive theorem on C-reducible Finsler spaces, Tensor, N. S., 1978, 32:225-230.
[13] Rund H., The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
[14] Shen Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[15] Shen Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math., 2006, 27(1):73-94.
[16] Shen B., Tian Y., Dually flat Kropina metrics, Adv. Math. China, 2017, 46:453-462.
[17] Xia Q., On locally dually flat (α, β)-metrics, Differential Geometry and Its Applications, 2011, 29(2):233-243.
[18] Yu C., On dually flat Randers metrics, Nonlinear Analysis, 2014, 95:146-155.

[1]陈全园, 李长京, 方小春. von Neumann代数中CSL子代数上的Jordan (α,β)-导子[J]. 数学学报, 2017, 60(4): 537-546.
[2]王利广, 李静. 一类可加和二次混合泛函方程的稳定性[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 583-596.
[3]李建泽. Jβ空间的基本性质以及与lβ的关系[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 665-668.
[4]冯淑霞, 张晓飞, 陈慧勇. 多复变数的抛物星形映射[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 467-482.
[5]陈冬香, 吴丽丽. 乘子算子及其交换子在Morrey空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 81-88.
[6]李亮, 江寅生. 非齐型空间中一类满足Hörmander条件的Marcinkiewicz交换子估计[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 87-96.
[7]徐庆华, 刘太顺. 用统一的方法处理双全纯映照子族齐次展开式的估计[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1189-1198.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23399
相关话题/空间 数学 重庆 交换 重庆师范大学