删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非线性高阶波动型方程的局部解及解的Blow-up

本站小编 Free考研考试/2021-12-27

非线性高阶波动型方程的局部解及解的Blow-up 叶耀军浙江科技学院数学信息与统计系, 杭州 310023 Local Existence and Blow-up of Solution for Nonlinear Higher-order Wave Equation YE YaojunDepartment of Mathematical Information and Statistics, Zhejiang University of Science and Technology, Hangzhou 310023, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(323 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类非线性高阶波动型方程的初边值问题.在阻尼项和源项的适当假设条件下,讨论了此问题局部解的存在唯一性.同时证明了初始能量为负时,解在有限时间内发生blow-up,并给出了解的生命区间估计.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-03-06
PACS:35A07
35L75
基金资助:浙江省自然科学基金(No.LY17A010009)资助项目.

引用本文:
叶耀军. 非线性高阶波动型方程的局部解及解的Blow-up[J]. 应用数学学报, 2021, 44(3): 393-406. YE Yaojun. Local Existence and Blow-up of Solution for Nonlinear Higher-order Wave Equation. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 393-406.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/393


[1] Alves C O, Cavalcanti M M. On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. Partial Differential Equations, 2009, 34: 377–411
[2] Alves C O, Cavalcanti M M, Domingos C, Valeria N, Rammaha M A, Toundykov D. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete Contin. Dyn. Syst. Ser. S, 2009, 2: 583–608
[3] Benaissa A, Messaoudi S A. Exponential decay of solutions of a nonlinearly damped wave equation. Nonlinear Differ. Equ. Appl., 2005, 12: 391–399
[4] Georgiev V, Todorova G. Existence of solutions of the wave equation with nonlinear damping and source terms. J. Diff. Eqns., 1994, 109: 295–308
[5] Liu Y C, Zhao J S. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal., 2006, 64: 2665–2687
[6] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math., 1975, 22: 73–303
[7] Todorova G. Cauchy problem for a nonlinear wave with nonlinear damping and source terms. C. R. Acad Sci. Paris Ser.I, 1998, 326: 191–196
[8] Vitiliaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Rational Mech. Anal., 1999, 149: 155–182
[9] Guesmia A. Existence globale et stabilisation interne non linéaire d’un système de Petrovsky. Bell. Belg. Math. Soc., 1998, 5: 583–594
[10] Guesmia A. Energy decay for a damped nonlinear coupled system. J. Math. Anal. Appl., 1999, 239: 38–48
[11] Aassila M, Guesmia A. Energy decay for a damped nonlinear hyperbolic equation. Appl. Math. Lett., 1999, 12: 49–52
[12] Komornik V. Exact Controllability and Stabilization, The Multiplier Method. Paris: Masson, 1994
[13] Messaoudi S A. Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl., 2002, 265: 296–308
[14] Nakao M. A difference inequality and its application to nonlinear evolution equations. J. Math. Soc. Jpn., 1978, 30: 747–762
[15] Messaoudi S A. Global existence and decay of solutions to a system of Petrovsky. Math. Sci. Res. J., 2002, 11: 534–541
[16] Chen W Y, Zhou Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal. TAM, 2009, 70: 3203–3208
[17] Wu S T, Tsai L Y. On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system. Taiwanese J. Math., 2009, 13: 545–558
[18] Nakao M. Bounded, periodic and almost periodic classical solutionsof some nonlinear wave equations with a dissipative term. J. Math. Soc. Japan, 1978, 30: 375–394
[19] Nakao M, Kuwahara H. Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkcialaj Ekvacioj, 1987, 30: 135–145
[20] Bernner P., Whal W V. Global classical solutions of nonlinear wave equations. Math. Z., 1981, 176: 87–121
[21] Pecher H. Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen. Math. Z., 1974, 140: 263–279
[22] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math., 1975, 22:273–303
[23] Sattinger D H. On global solutions for nonlinear hyperbolic equations. Arch. Rational Mech. Anal., 1968, 30: 148–172
[24] Wang B X. Nonlinear scattering theory for a class of wave equations in Hs. J. Math. Anal. Appl., 2004, 296: 74–96
[25] Miao C X. The time space estimates and scattering at low energy for nonlinear higher order wave equations. ACTA Mathematica Sinica, Series A, 1995, 38: 708–717
[26] Ye Y J. Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. J. Ineqal. Appl., 2010, 2010: 1–14
[27] Aliev A B, Lichaei B H. Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations. Nonlinear Anal. TMA, 2010, 72: 3275–3288
[28] Wu S T, Tsai L Y. Blow-up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping. Taiwanese J. Math., 2010, 14: 2043–2058
[29] Barbu V. Analysis and Control of Nonlinear Infinite Dimensional Systems. New York: Academic Press, 1993
[30] Lions J L. Quelques methodes de resolution des problèmes aux limites nonlinéaires. Paris: Dund Gautier-Villars, 1969
[31] Strauss W A. On continuity of functions with values in various Banach spaces. Pacific J. of Math., 1966, 19: 543–551
[32] Wu S T, Tsai L Y. On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwanese J. Math., 2006, 10: 979–1014

[1]Xiao-xiao ZHENG, Ya-dong SHANG, Xiao-ming PENG. Blow up of Solutions for a Nonlinear Petrovsky Type Equation with Time-dependent Coefficients[J]. 应用数学学报(英文版), 2020, 36(4): 836-846.
[2]阚辉, 杨小舟. 一类二维守恒律方程的初边值问题[J]. 应用数学学报, 2019, 42(6): 793-812.
[3]Hai-bo LU, Ming-kang NI, Li-meng WU. Extending Slow Manifold Near Generic Transcritical Canard Point[J]. 应用数学学报(英文版), 2017, 33(4): 989-1000.
[4]Yun-xia LIU, Yun-hua WANG, Si-ning ZHENG. Fujita Type Conditions to Heat Equation with Variable Source[J]. 应用数学学报(英文版), 2017, 33(1): 63-68.
[5]Yu-dong SUN, Yi-min SHI, MIN WU. Nonexistence and Longtime Behaviors of Solutions to a Class of Nonlinear Degenerate Parabolic Equations Not in Divergence Form[J]. 应用数学学报(英文版), 2016, 32(2): 327-332.
[6]Qing GUO. Divergent Solutions to the L2-Supercritical NLS Equations[J]. 应用数学学报(英文版), 2016, 32(1): 137-162.
[7]Xian-zhong ZENG, Zhen-hai LIU, Yong-geng GU. Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System[J]. 应用数学学报(英文版), 2013, 29(3): 541-554.
[8]雍燕. 一类非线性抛物方程的初边值问题[J]. 应用数学学报(英文版), 2011, 34(1): 113-121.
[9]杨丕文, 李曼荔, 陈颖. 某些一阶双曲方程组的初边值问题[J]. 应用数学学报(英文版), 2008, 31(1): 61-71.
[10]王肖玉、朱永贵. 非线性Sobolev-Galpern方程差分格式的长时间收敛性和稳定性[J]. 应用数学学报(英文版), 2006, 29(2): 368-373.
[11]Wen Jun SUN. Some Notes on Reaction Diffusion Systems with Nonlinear Boundary Conditions[J]. 应用数学学报(英文版), 2003, 19(1): 143-156.
[12]Wen Jun SUN. Some Notes on Reaction Diffusion Systems with Nonlinear Boundary Conditions[J]. 应用数学学报(英文版), 2003, 19(1): 143-156.
[13]曾有栋陈祖墀. BEHAVIOUR OF SOLUTIONS OF THE QUASILINEAR WAVE EQUATIONS FOR MECHANISM WITH A BOUNDARY PISTON POSSESSING MASS[J]. 应用数学学报(英文版), 2001, 24(2): 0-0.
[14]陈国旺, 吕胜关. 人口问题中广义三维GINZBURG-LANDAU模型方程[J]. 应用数学学报(英文版), 2000, 23(4): 507-517.
[15]尚亚东. 方程u_(tt)-△u-△u_t-△u_(tt)=f(u)的初边值问题[J]. 应用数学学报(英文版), 2000, 23(3): 385-393.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14913
相关话题/应用数学 统计 学报 生命 人口