摘要本文研究了一类非线性高阶波动型方程的初边值问题.在阻尼项和源项的适当假设条件下,讨论了此问题局部解的存在唯一性.同时证明了初始能量为负时,解在有限时间内发生blow-up,并给出了解的生命区间估计. |
[1] | Alves C O, Cavalcanti M M. On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. Partial Differential Equations, 2009, 34: 377–411 | [2] | Alves C O, Cavalcanti M M, Domingos C, Valeria N, Rammaha M A, Toundykov D. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete Contin. Dyn. Syst. Ser. S, 2009, 2: 583–608 | [3] | Benaissa A, Messaoudi S A. Exponential decay of solutions of a nonlinearly damped wave equation. Nonlinear Differ. Equ. Appl., 2005, 12: 391–399 | [4] | Georgiev V, Todorova G. Existence of solutions of the wave equation with nonlinear damping and source terms. J. Diff. Eqns., 1994, 109: 295–308 | [5] | Liu Y C, Zhao J S. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal., 2006, 64: 2665–2687 | [6] | Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math., 1975, 22: 73–303 | [7] | Todorova G. Cauchy problem for a nonlinear wave with nonlinear damping and source terms. C. R. Acad Sci. Paris Ser.I, 1998, 326: 191–196 | [8] | Vitiliaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Rational Mech. Anal., 1999, 149: 155–182 | [9] | Guesmia A. Existence globale et stabilisation interne non linéaire d’un système de Petrovsky. Bell. Belg. Math. Soc., 1998, 5: 583–594 | [10] | Guesmia A. Energy decay for a damped nonlinear coupled system. J. Math. Anal. Appl., 1999, 239: 38–48 | [11] | Aassila M, Guesmia A. Energy decay for a damped nonlinear hyperbolic equation. Appl. Math. Lett., 1999, 12: 49–52 | [12] | Komornik V. Exact Controllability and Stabilization, The Multiplier Method. Paris: Masson, 1994 | [13] | Messaoudi S A. Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl., 2002, 265: 296–308 | [14] | Nakao M. A difference inequality and its application to nonlinear evolution equations. J. Math. Soc. Jpn., 1978, 30: 747–762 | [15] | Messaoudi S A. Global existence and decay of solutions to a system of Petrovsky. Math. Sci. Res. J., 2002, 11: 534–541 | [16] | Chen W Y, Zhou Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal. TAM, 2009, 70: 3203–3208 | [17] | Wu S T, Tsai L Y. On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system. Taiwanese J. Math., 2009, 13: 545–558 | [18] | Nakao M. Bounded, periodic and almost periodic classical solutionsof some nonlinear wave equations with a dissipative term. J. Math. Soc. Japan, 1978, 30: 375–394 | [19] | Nakao M, Kuwahara H. Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkcialaj Ekvacioj, 1987, 30: 135–145 | [20] | Bernner P., Whal W V. Global classical solutions of nonlinear wave equations. Math. Z., 1981, 176: 87–121 | [21] | Pecher H. Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen. Math. Z., 1974, 140: 263–279 | [22] | Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math., 1975, 22:273–303 | [23] | Sattinger D H. On global solutions for nonlinear hyperbolic equations. Arch. Rational Mech. Anal., 1968, 30: 148–172 | [24] | Wang B X. Nonlinear scattering theory for a class of wave equations in Hs. J. Math. Anal. Appl., 2004, 296: 74–96 | [25] | Miao C X. The time space estimates and scattering at low energy for nonlinear higher order wave equations. ACTA Mathematica Sinica, Series A, 1995, 38: 708–717 | [26] | Ye Y J. Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. J. Ineqal. Appl., 2010, 2010: 1–14 | [27] | Aliev A B, Lichaei B H. Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations. Nonlinear Anal. TMA, 2010, 72: 3275–3288 | [28] | Wu S T, Tsai L Y. Blow-up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping. Taiwanese J. Math., 2010, 14: 2043–2058 | [29] | Barbu V. Analysis and Control of Nonlinear Infinite Dimensional Systems. New York: Academic Press, 1993 | [30] | Lions J L. Quelques methodes de resolution des problèmes aux limites nonlinéaires. Paris: Dund Gautier-Villars, 1969 | [31] | Strauss W A. On continuity of functions with values in various Banach spaces. Pacific J. of Math., 1966, 19: 543–551 | [32] | Wu S T, Tsai L Y. On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwanese J. Math., 2006, 10: 979–1014 |
[1] | Xiao-xiao ZHENG, Ya-dong SHANG, Xiao-ming PENG. Blow up of Solutions for a Nonlinear Petrovsky Type Equation with Time-dependent Coefficients[J]. 应用数学学报(英文版), 2020, 36(4): 836-846. | [2] | 阚辉, 杨小舟. 一类二维守恒律方程的初边值问题[J]. 应用数学学报, 2019, 42(6): 793-812. | [3] | Hai-bo LU, Ming-kang NI, Li-meng WU. Extending Slow Manifold Near Generic Transcritical Canard Point[J]. 应用数学学报(英文版), 2017, 33(4): 989-1000. | [4] | Yun-xia LIU, Yun-hua WANG, Si-ning ZHENG. Fujita Type Conditions to Heat Equation with Variable Source[J]. 应用数学学报(英文版), 2017, 33(1): 63-68. | [5] | Yu-dong SUN, Yi-min SHI, MIN WU. Nonexistence and Longtime Behaviors of Solutions to a Class of Nonlinear Degenerate Parabolic Equations Not in Divergence Form[J]. 应用数学学报(英文版), 2016, 32(2): 327-332. | [6] | Qing GUO. Divergent Solutions to the L2-Supercritical NLS Equations[J]. 应用数学学报(英文版), 2016, 32(1): 137-162. | [7] | Xian-zhong ZENG, Zhen-hai LIU, Yong-geng GU. Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System[J]. 应用数学学报(英文版), 2013, 29(3): 541-554. | [8] | 雍燕. 一类非线性抛物方程的初边值问题[J]. 应用数学学报(英文版), 2011, 34(1): 113-121. | [9] | 杨丕文, 李曼荔, 陈颖. 某些一阶双曲方程组的初边值问题[J]. 应用数学学报(英文版), 2008, 31(1): 61-71. | [10] | 王肖玉、朱永贵. 非线性Sobolev-Galpern方程差分格式的长时间收敛性和稳定性[J]. 应用数学学报(英文版), 2006, 29(2): 368-373. | [11] | Wen Jun SUN. Some Notes on Reaction Diffusion Systems with Nonlinear Boundary Conditions[J]. 应用数学学报(英文版), 2003, 19(1): 143-156. | [12] | Wen Jun SUN. Some Notes on Reaction Diffusion Systems with Nonlinear Boundary Conditions[J]. 应用数学学报(英文版), 2003, 19(1): 143-156. | [13] | 曾有栋陈祖墀. BEHAVIOUR OF SOLUTIONS OF THE QUASILINEAR WAVE EQUATIONS FOR MECHANISM WITH A BOUNDARY PISTON POSSESSING MASS[J]. 应用数学学报(英文版), 2001, 24(2): 0-0. | [14] | 陈国旺, 吕胜关. 人口问题中广义三维GINZBURG-LANDAU模型方程[J]. 应用数学学报(英文版), 2000, 23(4): 507-517. | [15] | 尚亚东. 方程u_(tt)-△u-△u_t-△u_(tt)=f(u)的初边值问题[J]. 应用数学学报(英文版), 2000, 23(3): 385-393. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14913
偏正态数据下混合非线性位置回归模型的统计诊断曹幸运,聂兴锋,吴刘仓昆明理工大学理学院,昆明650093StatisticalDiagnosisofMixtureNonlinearLocationRegressionModelwithSkew-NormalDataCAOXingyun,NIEXingf ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27对"一类带收获率的离散时滞人口模型正周期解存在性"的探究廖华英,徐向阳,胡启宙南昌师范学院数学与计算机科学系,南昌330032ExplorationabouttheExistenceofPositivePeriodicSolutionsforaClassofDiscreteTimeDelayedPo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27项莹,陈奇远浙江财经大学数据科学学院,杭州310018出版日期:2021-10-25发布日期:2021-12-24MeasurementofthePharmaceuticalManufacturingIndustry'sParticipationintheGlobalandDomesticValue ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27董苏雅拉图内蒙古财经大学计算机信息管理学院,呼和浩特010070出版日期:2021-10-25发布日期:2021-12-24PanicPropagationModelwiththeCharacteristicsofFloatingPopulationinStockMarketDONGSuyalatu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27张虹1,邱国新1,21.安徽新华学院商学院,合肥230088;2.中国科学技术大学管理学院,合肥230026出版日期:2021-02-25发布日期:2021-04-19TestingSymmetryBasedontheExtropyofOrderStatisticsZHANGHong1,QIUGuo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27赵远英1,徐登可2,段星31.贵阳学院数学与信息科学学院,\贵阳550005;2.浙江农林大学统计系,杭州311300;3.贵州财经大学数学与统计学院,贵阳550025出版日期:2020-01-25发布日期:2020-04-29BayesianCaseDeletionStatisticalDiagn ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27RobertMcCaa1,胡桂华2,廖金盆21.明尼苏达大学人口中心,明尼阿波利斯55455;2.重庆工商大学数学与统计学院,经济社会应用统计重庆市重点实验室,重庆400067出版日期:2019-11-25发布日期:2020-03-20EvaluationofPopulationCensusCont ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27朱琳琳1,2,董纪昌3,张辉1,李秀婷31.北京大学经济学院,北京100871;2.中国信达资产管理股份有限公司,北京100031;3.中国科学院大学经济与管理学院,北京100190出版日期:2019-09-25发布日期:2019-12-05TheImpactofAgingonChina'sHous ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27相鑫1,3,刘秀丽1,2,31.中国科学院数学与系统科学研究院,北京100190;2.中国科学院预测科学研究中心,北京100190;3.中国科学院大学,北京100049出版日期:2018-06-25发布日期:2018-08-21Four-LayerParameterSelf-AdjustingBPN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|