摘要本文提出了求解单调包含问题的一类新的惯性混合非精确邻近点算法(简记为iHIPPA).在适当的参数假设下,我们证明了求解单调包含问题的iHIPPA所产生点列的弱收敛性,获得了iHIPPA的非渐近收敛率为O(1/√k)及iHIPPA的遍历迭代复杂性为O(1/k).作为应用,我们还建立了求解单调变分包含问题的惯性邻近收缩算法,求解广义变分不等式问题的惯性投影邻近点算法,及求解原始—对偶问题的惯性非精确调比部分逆算法产生点列的收敛性及相应算法的非渐近收敛率及遍历迭代复杂性.本文结果推广和改进了文献中的相应结论.最后,本文应用新的惯性交替方向乘子法用以求解LASSO问题,而且一些初步的试验结果表明了新的算法的优越性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-06-25 | | 基金资助:国家自然科学基金重大项目(11991024),国家自然科学基金面上项目(11171363)和重庆市基础科学与前沿技术研究专项重点项目(cstc2015jcyjBX0029)资助. |
[1] | Boţ R I, Csetnek E R. A hybrid proximal-extragradient algorithm with inertial effects. Numerical Functional Analysis and Optimization, 2015, 36(8):951-963 | [2] | Martinet B. Régularisation d'inéquations variationnelles par approximations successives. ESAIM:Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 1970, 4(R3):154-158 | [3] | Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 1976, 14(5):877-898 | [4] | Solodov M V, Svaiter B F. A hybrid projection-proximal point algorithm. Journal of Convex Analysis, 1999, 6(1):59-70 | [5] | Solodov M V, Svaiter B F. A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis, 1999, 7:323-345 | [6] | Burachik R S, Iusem A, Svaiter B F. Enlargement of monotone operators with applications to variational inequalities. Set-Valued Analysis, 1997, 5(2):159-180 | [7] | Tseng P. A modified forward-backward splitting method for maximal monotone mappings. SIAM Journal on Control and Optimization, 2000, 38:431-446 | [8] | Solodov M V, Svaiter B F. A unified framework for some inexact proximal point algorithms. Numerical Functional Analysis and Optimization, 2001, 22:1013-1035 | [9] | Solodov M V. A class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework. Optimization Methods and Software, 2004, 19:557-575 | [10] | Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems. Mathematical Programming, 1994, 64:81-101 | [11] | Parente L A, Lotito P A, Solodov M V. A class of inexact variable metric proximal point algorithms. SIAM Journal on Optimization, 2008, 19:240-260 | [12] | Lotito P A, Parente L A, Solodov M V. A class of variable metric decomposition methods for monotone variational inclusions. Journal of Convex Analysis, 2009, 16:857-880 | [13] | Chen C, Chan R H, Ma S, Yang J. Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM Journal on Imaging Sciences, 2015, 8(4):2239-2267 | [14] | Boţ R I, Csetnek E R, Hendrich C. Inertial Douglas-Rachford splitting for monotone inclusion problems. Applied Mathematics and Computation, 2015, 256:472-487 | [15] | Moudafi A. A hybrid inertial projection-proximal method for variational inequalities. Journal of Inequalities in Pure & Applied Mathematics, 2004, 5(3):1-13 | [16] | Burachik R S, Svaiter B F. ε-enlargements of maximal monotone operators in Banach spaces. SetValued Analysis, 1999, 7(2):117-132 | [17] | Burachik R S, Sagastizábal C A, Svaiter B F. ε-enlargements of maximal monotone operators:theory and applications. In:M. Fukushima, L. Qi (eds), Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Acad. Publ., 1999, 25-44 | [18] | Bauschke H H, Combettes P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York:Springer-Verlag, 2010 | [19] | Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the American Mathematical Society, 1967, 73(4):591-597 | [20] | Alvarez F, Attouch H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Analysis, 2001, 9:3-11 | [21] | Chen C, Ma S, Yang J. A general inertial proximal point algorithm for mixed variational inequality problem. SIAM Journal on Optimization, 2015, 25(4):2120-2142 | [22] | Moudafi A, Oliny M. Convergence of a splitting inertial proximal method for monotone operators. Journal of Computational and Applied Mathematics, 2003, 155:447-454 | [23] | Attouch H, Cabot A. Convergence of a relaxed inertial proximal algorithm for maximally monotone operators. Preprint hal-01708905, 2018. | [24] | Alvarez F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM Journal on Optimization, 2003, 14(3):773-782 | [25] | Alves M M, Marcavillaca R T. On inexact relative-error hybrid proximal extragradient, forwardbackward and Tseng's modified forward-backward methods with inertial effects. Set-Valued and Variational Analysis, 2019:1-25 https://doi.org/10.1007/s11228-019-00510-7. | [26] | 王艺楠. Hilbert空间中单调变分包含问题的算法研究. 天津:中国民航大学, 2018(Wang Y. The iterative algorithm of monotone variational inclusion problem in Hilbert space. Tianjin:Civil Aviation University of China, 2018) | [27] | Zhang C, Wang Y. Proximal algorithm for solving monotone variational inclusion. Optimization, 2018(1):1-13 | [28] | Xia F Q, Huang N J. A projection-proximal point algorithm for solving generalized variational inequalities. Journal of Optimization Theory and Applications, 2011, 150:98-117 | [29] | Briceño A, Luis M. Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization, 2015, 64(5):1239-1261 | [30] | Spingarn J E. Partial inverse of a monotone operator. Applied Mathematics and Optimization, 1983, 10(3):247-265 | [31] | Burachik R S, Sagastizábal C A, Scheimberg S. An inexact method of partial inverses and a parallel bundle method. Optimization Methods and Software, 2006, 21(3):385-400 | [32] | Adona V A, Gonçalves M L N, Melo J G. A partially inexact proximal alternating direction method of multipliers and its iteration-complexity analysis. Journal of Optimization Theory and Applications, 2019, 182(2):640-666 | [33] | Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B (Methodological), 1996, 58(1):267-288 | [34] | Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends. Mach. Learn., 2011, 3:1-122 |
[1] | 黎健玲, 王培培, 曾友芳, 简金宝. 凸二次半定规划一个长步原始对偶路径跟踪算法[J]. 应用数学学报, 2020, 43(1): 12-32. | [2] | 李成进, 张圣贵, 吴慧慧. 广义半正定最小二乘问题的近似点迭代法[J]. 应用数学学报, 2019, 42(3): 371-384. | [3] | 王福胜, 高娟, 赵媛璐, 姜合峰. 混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法[J]. 应用数学学报, 2019, 42(2): 242-253. | [4] | 李明强, 韩丛英, 郭田德. 新的梯度算法求解单位球笛卡尔积约束优化问题[J]. 应用数学学报, 2018, 41(1): 43-54. | [5] | 张艳君, 赵金玲, 徐尔. 求解多集分裂可行问题的一种新的松弛投影算法[J]. 应用数学学报, 2017, 40(5): 641-652. | [6] | 唐国吉, 汪星, 叶明露. 混合变分不等式的一个投影型方法[J]. 应用数学学报, 2016, 39(4): 574-585. | [7] | 刘美杏, 唐春明, 简金宝. 不等式约束优化基于新型积极识别集的SQCQP算法[J]. 应用数学学报, 2015, 38(2): 222-234. | [8] | 陈智勤, 李成进, 张圣贵. 物流管理中的图分割问题[J]. 应用数学学报, 2015, 38(2): 356-365. | [9] | 马国栋, 简金宝, 江羡珍. 一个具有下降性的改进Fletcher-Reeves共轭梯度法[J]. 应用数学学报, 2015, 38(1): 89-97. | [10] | 张长温, 李师正. 凸半无限规划正则性的刻画[J]. 应用数学学报(英文版), 2014, 37(4): 735-744. | [11] | 黎健玲, 黄仁帅, 简金宝. 非线性互补约束优化一个全局收敛的QP-free算法[J]. 应用数学学报(英文版), 2014, 37(4): 629-644. | [12] | 裴永刚, 靳利, 申培萍. 求解带指数凹多乘积规划问题的对偶界方法[J]. 应用数学学报(英文版), 2013, (1): 115-125. | [13] | 王永丽, 韩丛英, 李田, 李明强. 求解不等式约束优化问题无严格互补松弛条件的one QP-Free新算法[J]. 应用数学学报(英文版), 2013, (1): 1-13. | [14] | 吴秋峰, 刘振忠. Stiefel流形上的梯度下降法[J]. 应用数学学报(英文版), 2012, (4): 719-727. | [15] | 王秀玉, 姜兴武, 刘庆怀. 非线性互补问题的组合同伦算法 [J]. 应用数学学报(英文版), 2012, (3): 430-440. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14797
凸二次半定规划一个长步原始对偶路径跟踪算法黎健玲1,王培培1,曾友芳1,简金宝21.广西大学数学与信息科学学院,南宁530004;2.广西民族大学理学院,南宁ALongStepPrimal-DualPath-followingAlgorithmforConvexQuadraticSemidefini ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非凸集值优化问题E-Benson真有效元的最优性条件吴唯钿1,仇秋生1,田伟福21.浙江师范大学数学系,金华321004;2.浙江师范大学计划财务处,金华321004TheOptimalityConditionsofE-BensonProperEfficientElementforNonconvex ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非光滑半无限多目标优化问题的Lagrange鞍点准则杨玉红1,21.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100LagrangeSaddlePointCriteriaforNonsmoothSemi-infiniteMultiobjectiveOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27新的梯度算法求解单位球笛卡尔积约束优化问题李明强1,2,韩丛英2,3,郭田德2,31.中国电子科技集团公司信息科学研究院,北京100086;2.中国科学院大学数学科学学院,北京100049;3.中国科学院大数据挖掘与知识管理重点实验室,北京100190NewGradientAlgorithmsfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的非线性增广拉格朗日方法向丽苏州大学数学科学学院,苏州215006TheNonlinearAugmentedLagrangianMethodofSet-valuedOptimizationXIANGLiDepartmentofMathematics,SoochowUniversity,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用徐义红,彭振华南昌大学数学系,南昌330031ANewKindofSecond-OrderSubgradientandApplicationstotheCharacterizationsforWeakMinimizerofSet-ValuedOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27关于《集值优化问题Henig真有效解的最优性条件》一文的注记徐义红,张霞南昌大学数学系,南昌330031ARemarkon《TheOptimizaitionConditionofHenigProperEfficientSolutionforSet-valuedOptimizationProblem》 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27史金凤1,樊甜甜1,杨威21.山西大学经济与管理学院,太原030006;2.山西大学管理与决策研究所,太原030006出版日期:2021-11-25发布日期:2021-12-25AllocationEffectandOptimizationCountermeasuresofFiscalResourc ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27简金宝1,徐笑2,晁绵涛21.广西民族大学理学院,南宁530006;2.广西大学数学与信息科学学院,南宁530004出版日期:2021-11-25发布日期:2021-12-25ConvergenceofProximalADMMwithanOver-RelaxationStepsizeforNonco ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|