摘要本文主要研究单个非线性双曲守恒律的二维Riemann初边值问题,其中边界为二维斜光滑柱面,初值和边值均为常数,为了研究边界为直纹面的情形,首先要研究和构造其对应的初值问题的全局解和解的区域,验证得到的解满足Rankine-Hugoniot边界条件,内部熵条件不等式,再将所得到的解限制在边界范围内,验证它满足边界熵条件不等式,从而得到单个守恒律的二维Riemann初值问题的非自模的整体弱熵解. |
[1] | Conway E, Smoler J. Global solutions of the Cauchy Problem for Quastlinear First-order Equation in Several Space Variables. Comm. Pure. Appl. Math., 1996, 19:95-105 | [2] | Kruzkov S N. Generalized solutions of the Cauchy Problem in large for nonlinear equations of first order. Soviet. Math. Dokl., 1969, 10:75-788 | [3] | David Hoff. Locally Lipschitz of a single conservation law in severan viariable. J. Differential Equations, 1981, 42(2):215-233 | [4] | Zhang T, Chen G Q. Some fundamental concepts for system of two spatial dimensional conservation laws. J. Acta Math. Sci., 1986, 152(2):409-430 | [5] | Xu Jin-Chao, Ying Long-An. Convergence of an explicit upwind finite element method to multi-dimensional conservation laws. J. Comput. Math., 2001, 19(1):87-100 | [6] | Szepessy A. Convergence of a shock capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comp., 1989, 188(53):527-545 | [7] | Kroner D, Rokyta M. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal., 1994, 31(2):324-343 | [8] | Zhang T, Zheng Y X. Two-dimensional Riemann problem for a single conservation law. Trans. Amer. Math. Soc., 1989, 312(2):589-619 | [9] | Zhang Peng, Zhang Tong. Generalized characteristic analysis and Guckenheimer structure. J. Differential Equations, 1999, 152(2):409-430 | [10] | Zheng Yuxi. Two-dimensional Riemann problems. Boston, Birkhäuser, 2001 | [11] | Guckenheimer J. Shocks and Rarefactions in two space diemension. Arch. Ratinal Mech. Anal., 1975, 59:281-291 | [12] | Chen Guiqiang, Li Dening, Tan Dechun. Structure of Riemann solution for 2-dimensional scalar conservation laws. J. Differential Equations, 1996, 127(1):124-147 | [13] | Yang Xiaozhou. Multi-Dimensional Riemann problem of scalar conservation law. Acta Math. Sci., 1990, 19(2):190-200 | [14] | Yang Xiaozhou, Huang Feimin. Two dimensional Riemann problem of simplified Euler equation. Chinese Science Bulletin, 1998, 43(6):441-444 | [15] | Lin H, Pan T. The viscosity method for Riemann initial-boundary problem of scolar Conservation Laws. Asian Information-Science-Life, 2002, 1:32-44 | [16] | Kan P K, Santos M M, Xin Z P. Initial boundary value problem for conservation laws. Comm. Math. Phys., 1997, 186:701-730 | [17] | Serre D, Zumbrum K. Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys., 2001, 221:26-292 | [18] | Dubotis F, Lefloch D. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Diff. Eqs., 1998, 71:93-122 | [19] | LeFloch P. Explicit formula for scalar non-linear conservation laws with boundary condition. Math Methods Appl. Sci., 1988, 10:265-287 | [20] | Pan T, Lin L W. The global solution of the scolar nonconvex conservation laws with boundary condition. Jounal of Parial Differential Equations, 1995, 8(4):271-383 | [21] | Pan T, Lin L W. The global solution of the scolar nonconvex conservation laws with boundary condition. Jounal of Parial Differential Equations, 1998, 11(1):1-8 | [22] | Lin H, Pan T. Interaction of elementary waves for scolar conservation laws on a bounded domain. Mathematical Methods in the Applied Science, 2003, 26(7):619-632 | [23] | Bardos C, Leroux A Y, Nedelec J C. First order quasilinear equations with boundary conditions. Comm. Part. Diff. Eqs., 1979, 4:1017-1034 | [24] | Hopf E. On the right weak solution of the Cauchy problem for a quasilinear equation of first order. J. Math. Mech., 1969, 19(71):93-122 | [25] | Peter D Lax. Hyperbolic systems of conservation laws and the methematical theory of dhock waves. Society for Industrial and Applied Mathematics, 1973 | [26] | Bressan A. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 1992, 170:414-432 | [27] | Alberto Bressan. Hyperbolic Systems of Conservation Laws. Oxford University Press, 2000 | [28] | Ancona F, Bianchini S. Vanishing viscosity solutions general hyperbolic systems with boundary. Preprint IAC-CNR, 2003, 28 | [29] | Bianchini S, Bressan A. Vanishing viscosity solutions of non linear hyperbolic systems. Ann. of Math., 2005, 161:223-342 | [30] | Lin H, Pan T. Constructin of soluntion and L2-Error Estimates of viscous Methods for scolar Conservation Laws with Boundary. Acta Mathematical Sinica-English Series, 2007, 23(3):393-410 |
[1] | 尹晨阳, 马跃萧, 张国伟. 具有非局部Stieltjes积分边值条件半正(k,n-k)边值问题的非平凡解[J]. 应用数学学报, 2020, 43(1): 62-78. | [2] | 张鲁豫. Klein-Gordon-Maxwell系统的无穷多变号解[J]. 应用数学学报, 2019, 42(6): 779-792. | [3] | 孙淑芹. Hilbert格上双参数广义变分不等式问题解映射的保序性[J]. 应用数学学报, 2019, 42(1): 121-131. | [4] | 张申贵. 一类变指数基尔霍夫型方程的无穷多解[J]. 应用数学学报, 2018, 41(6): 801-810. | [5] | 魏利, 张瑞兰, Ravi P. Agarwal. H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统[J]. 应用数学学报, 2018, 41(5): 653-666. | [6] | 魏利, 樊树鑫, Ravi P. Agarwal. 含有广义p-Laplacian边值问题与m增生映射[J]. 应用数学学报, 2018, 41(3): 356-368. | [7] | 肖建中, 王智勇, 居加敏. 向量半线性二阶脉冲泛函微分包含的C1-可解性[J]. 应用数学学报, 2017, 40(6): 820-840. | [8] | 王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572. | [9] | 朴勇杰. ω-连通空间上弱φ-映射族的不动点,重合点和聚合不动点[J]. 应用数学学报, 2017, 40(3): 461-470. | [10] | 张石生, 王刚, 李向荣, 陈志坚. 无穷维Hilbert空间中的多集分裂可行性问题[J]. 应用数学学报, 2017, 40(2): 161-169. | [11] | 刘英, 何震, Noor Muhammad Aslam. Banach空间中关于广义变分不等式的杂交投影算法[J]. 应用数学学报, 2016, 39(4): 495-504. | [12] | 张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480. | [13] | 邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性[J]. 应用数学学报, 2015, 38(2): 201-211. | [14] | 朴勇杰. 拟度量空间上满足收缩条件的映射(族)的不动点和公共不动点[J]. 应用数学学报, 2015, 38(2): 261-272. | [15] | 朴勇杰, 金海兰, 南华. 度量凸空间上具有唯一公共不动点的非自集值映射族[J]. 应用数学学报(英文版), 2014, 37(3): 437-448. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14759
异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27从Hardy空间到Bloch空间的Volterra型复合算子李腾飞汕尾职业技术学院信息工程系,汕尾516600Volterra-typeCompositionOperatorsfromHardySpacesintoBloch-typeSpacesLITengfeiDepartmentofInform ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有两个小世界联接的时滞环形神经网络系统的稳定性分析李敏,赵东霞,毛莉中北大学理学院数学学科部,太原030051StabilityAnalysisofaDelayedRingNeuralNetworkwithTwoSmallWorldConnectionsLIMin,ZHAODongxia,MAOL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27离散切换正时滞系统在异步切换下的镇定性刘婷婷1,吴保卫2,刘丽丽2,王月娥21.西安工程大学理学院,西安710048;2.陕西师范大学数学与信息科学学院,西安710119StabilizationofDiscreteSwitchedPositiveTime-delaySystemsUnderAsyn ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统魏利1,张瑞兰1,RaviP.Agarwal2,31.河北经贸大学数学与统计学学院,石家庄050061;2.DepartmentofMathematics,TexasA&MUniversity-Kingsville,Kingsvi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|