删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类二维守恒律方程的初边值问题

本站小编 Free考研考试/2021-12-27

一类二维守恒律方程的初边值问题 阚辉, 杨小舟中国科学院武汉物理与数学研究所, 武汉 430071 The Initial And Boundary Value Problem of a Class of Two Dimensional Scalar Conservation Law KAN Hui, YANG XiaozhouWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(418 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究单个非线性双曲守恒律的二维Riemann初边值问题,其中边界为二维斜光滑柱面,初值和边值均为常数,为了研究边界为直纹面的情形,首先要研究和构造其对应的初值问题的全局解和解的区域,验证得到的解满足Rankine-Hugoniot边界条件,内部熵条件不等式,再将所得到的解限制在边界范围内,验证它满足边界熵条件不等式,从而得到单个守恒律的二维Riemann初值问题的非自模的整体弱熵解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-05-06
PACS:O177.91
基金资助:国家自然科学基金青年基金(11801551)和面上基金(11471332)资助项目.

引用本文:
阚辉, 杨小舟. 一类二维守恒律方程的初边值问题[J]. 应用数学学报, 2019, 42(6): 793-812. KAN Hui, YANG Xiaozhou. The Initial And Boundary Value Problem of a Class of Two Dimensional Scalar Conservation Law. Acta Mathematicae Applicatae Sinica, 2019, 42(6): 793-812.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I6/793


[1] Conway E, Smoler J. Global solutions of the Cauchy Problem for Quastlinear First-order Equation in Several Space Variables. Comm. Pure. Appl. Math., 1996, 19:95-105
[2] Kruzkov S N. Generalized solutions of the Cauchy Problem in large for nonlinear equations of first order. Soviet. Math. Dokl., 1969, 10:75-788
[3] David Hoff. Locally Lipschitz of a single conservation law in severan viariable. J. Differential Equations, 1981, 42(2):215-233
[4] Zhang T, Chen G Q. Some fundamental concepts for system of two spatial dimensional conservation laws. J. Acta Math. Sci., 1986, 152(2):409-430
[5] Xu Jin-Chao, Ying Long-An. Convergence of an explicit upwind finite element method to multi-dimensional conservation laws. J. Comput. Math., 2001, 19(1):87-100
[6] Szepessy A. Convergence of a shock capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comp., 1989, 188(53):527-545
[7] Kroner D, Rokyta M. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal., 1994, 31(2):324-343
[8] Zhang T, Zheng Y X. Two-dimensional Riemann problem for a single conservation law. Trans. Amer. Math. Soc., 1989, 312(2):589-619
[9] Zhang Peng, Zhang Tong. Generalized characteristic analysis and Guckenheimer structure. J. Differential Equations, 1999, 152(2):409-430
[10] Zheng Yuxi. Two-dimensional Riemann problems. Boston, Birkhäuser, 2001
[11] Guckenheimer J. Shocks and Rarefactions in two space diemension. Arch. Ratinal Mech. Anal., 1975, 59:281-291
[12] Chen Guiqiang, Li Dening, Tan Dechun. Structure of Riemann solution for 2-dimensional scalar conservation laws. J. Differential Equations, 1996, 127(1):124-147
[13] Yang Xiaozhou. Multi-Dimensional Riemann problem of scalar conservation law. Acta Math. Sci., 1990, 19(2):190-200
[14] Yang Xiaozhou, Huang Feimin. Two dimensional Riemann problem of simplified Euler equation. Chinese Science Bulletin, 1998, 43(6):441-444
[15] Lin H, Pan T. The viscosity method for Riemann initial-boundary problem of scolar Conservation Laws. Asian Information-Science-Life, 2002, 1:32-44
[16] Kan P K, Santos M M, Xin Z P. Initial boundary value problem for conservation laws. Comm. Math. Phys., 1997, 186:701-730
[17] Serre D, Zumbrum K. Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys., 2001, 221:26-292
[18] Dubotis F, Lefloch D. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Diff. Eqs., 1998, 71:93-122
[19] LeFloch P. Explicit formula for scalar non-linear conservation laws with boundary condition. Math Methods Appl. Sci., 1988, 10:265-287
[20] Pan T, Lin L W. The global solution of the scolar nonconvex conservation laws with boundary condition. Jounal of Parial Differential Equations, 1995, 8(4):271-383
[21] Pan T, Lin L W. The global solution of the scolar nonconvex conservation laws with boundary condition. Jounal of Parial Differential Equations, 1998, 11(1):1-8
[22] Lin H, Pan T. Interaction of elementary waves for scolar conservation laws on a bounded domain. Mathematical Methods in the Applied Science, 2003, 26(7):619-632
[23] Bardos C, Leroux A Y, Nedelec J C. First order quasilinear equations with boundary conditions. Comm. Part. Diff. Eqs., 1979, 4:1017-1034
[24] Hopf E. On the right weak solution of the Cauchy problem for a quasilinear equation of first order. J. Math. Mech., 1969, 19(71):93-122
[25] Peter D Lax. Hyperbolic systems of conservation laws and the methematical theory of dhock waves. Society for Industrial and Applied Mathematics, 1973
[26] Bressan A. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 1992, 170:414-432
[27] Alberto Bressan. Hyperbolic Systems of Conservation Laws. Oxford University Press, 2000
[28] Ancona F, Bianchini S. Vanishing viscosity solutions general hyperbolic systems with boundary. Preprint IAC-CNR, 2003, 28
[29] Bianchini S, Bressan A. Vanishing viscosity solutions of non linear hyperbolic systems. Ann. of Math., 2005, 161:223-342
[30] Lin H, Pan T. Constructin of soluntion and L2-Error Estimates of viscous Methods for scolar Conservation Laws with Boundary. Acta Mathematical Sinica-English Series, 2007, 23(3):393-410

[1]尹晨阳, 马跃萧, 张国伟. 具有非局部Stieltjes积分边值条件半正(k,n-k)边值问题的非平凡解[J]. 应用数学学报, 2020, 43(1): 62-78.
[2]张鲁豫. Klein-Gordon-Maxwell系统的无穷多变号解[J]. 应用数学学报, 2019, 42(6): 779-792.
[3]孙淑芹. Hilbert格上双参数广义变分不等式问题解映射的保序性[J]. 应用数学学报, 2019, 42(1): 121-131.
[4]张申贵. 一类变指数基尔霍夫型方程的无穷多解[J]. 应用数学学报, 2018, 41(6): 801-810.
[5]魏利, 张瑞兰, Ravi P. Agarwal. H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统[J]. 应用数学学报, 2018, 41(5): 653-666.
[6]魏利, 樊树鑫, Ravi P. Agarwal. 含有广义p-Laplacian边值问题与m增生映射[J]. 应用数学学报, 2018, 41(3): 356-368.
[7]肖建中, 王智勇, 居加敏. 向量半线性二阶脉冲泛函微分包含的C1-可解性[J]. 应用数学学报, 2017, 40(6): 820-840.
[8]王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572.
[9]朴勇杰. ω-连通空间上弱φ-映射族的不动点,重合点和聚合不动点[J]. 应用数学学报, 2017, 40(3): 461-470.
[10]张石生, 王刚, 李向荣, 陈志坚. 无穷维Hilbert空间中的多集分裂可行性问题[J]. 应用数学学报, 2017, 40(2): 161-169.
[11]刘英, 何震, Noor Muhammad Aslam. Banach空间中关于广义变分不等式的杂交投影算法[J]. 应用数学学报, 2016, 39(4): 495-504.
[12]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[13]邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性[J]. 应用数学学报, 2015, 38(2): 201-211.
[14]朴勇杰. 拟度量空间上满足收缩条件的映射(族)的不动点和公共不动点[J]. 应用数学学报, 2015, 38(2): 261-272.
[15]朴勇杰, 金海兰, 南华. 度量凸空间上具有唯一公共不动点的非自集值映射族[J]. 应用数学学报(英文版), 2014, 37(3): 437-448.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14759
相关话题/应用数学 空间 统计 基金 系统