摘要本文研究了一类具有不定奇性的二阶微分方程x"-(α(t))/(xμ(t))=h(t)周期正解的存在性问题,其中μ∈(0,1]为常数,α(t)和h(t)是T-周期的函数,α,h∈ L1([0,T],R),而且α(t)在t∈[0,T]上是可变号的. |
[1] | Plesset M S. The dynamics of cavitation bubbles. J. Apple. Mech., 1949, 16:228-231 | [2] | Jebelean P, Mawhin J. Periodic solutions of singular nonlinear differential perturbations of the ordinary p-Laplacian. Adv. Nonlinear Stud., 2002, 2(3):299-312 | [3] | Lei J, Zhang M. Twist property of periodic motion of an atom near a charged wire. Lett. Math. Phys., 2002, 60(1):9-17 | [4] | Torres P J. Mathematical Model with Singularities-A Zoo of Singular Creatures. Amsterdam:Atlantis Press, 2015, ISBN:978-94-6239-105-5 | [5] | Huang J, Ruan S, Song J. Bifurcations in a predator-pry system of Leslite type with deneralized Holling type functional response. J. Differ, Equ., 2014, 257(6):1721-1751 | [6] | 叶彦谦, 王现. 电子注聚焦理论中所出现的非线性微分方程. 应用数学学报, 1978, 1(1):13-41(Ye Y, Wang X. Nonlinear differential equations in electeon beam focusing theory. Acta Math. Appl. Sinica, 1978, 1(1):13-41) | [7] | Tanaka K. A note on generalized solutions of singular Hamiltonian systema. Proc. Am. Math. Soc., 1994, 122:275-284 | [8] | Terracini S. Remarks on periodic orbits of dynamical systems with repulsive singularrities. J. Funct. Anal., 1983, 111:213-238 | [9] | Nagumo M. On the periodic solution of an ordinary differential equation of second order. In:Zenkokou shijou Suudaku Danwakai, pp.54-61(1994)(in Japanese). English translation in Mitio Nagumo Collected papers, Springer, Berlin, 1993 | [10] | Hakl R, Zamora M. Periodic solutions to the Liénard type equations with phase attractive singularities. Boundary Value Problems, 2013, 47?? | [11] | Torres P J. Weak singularities may help periodic solutions to exist. J. Differ. Equ., 2007, 232:277-284 | [12] | Li X, Zhang Z. Periodic solutions for second order differential equations with a singular nonlinearity. Nonlinear Anal., 2008, 69:3866-3876 | [13] | Jiang D, Chu J, Zhang M. Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ., 2005, 211:282-302 | [14] | Chu J, Torres P J, Zhang M. Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equ., 2007, 239:196-212 | [15] | Cheng Z, Ren J. Multiplicity results of positive solutions foe fourth-order ninlinear differential equationwith singularity. Math. Methods Appl. Sci., 2016, 38:5284-5304 | [16] | Cheng Z, Ren J. Positive solutions for fourth-order singular nonlinear differential equation with variable-coefficient. Math. Methods Appl. Sci., 2016, 39:2251-2274 | [17] | Hakl R, Torres P J. On periodic solutions of second-order differential equations wiyh attractive-repulsive singularities. J. Differ. Equ., 2010, 248:111-126 | [18] | 钟涛, 鲁世平. 具有奇性的时滞Rayleigh方程周期正解存在性. 郑州大学学报(理学版), 2015, 47(2):7-12(Zhong Tao, Lu Shiping. Periodic Solutions of Rayleigh Equation with a Singularity and a Deviating Argument. Journal of Zhengzhou University (Natural Science Edition), 2015, 47(2):7-12) | [19] | Zhang M. Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl., 1996, 203(1):254-269 | [20] | 鲁世平, 孔凡超, 李洁. 一类具曲率算子的非线性方程的波前解. 四川大学学报(自然科学版), 2017, 54(4):693-697(Lu shiping, Kong Fanchao, Li Jie. Traveling wavefronts for nonlinear equation with mean curvature-like operator. Journal of Sichuan University (Natural Science Edition), 2017, 54(4):693-697) | [21] | 鲁世平, 牛亮, 郭原志, 陈丽娟. 一类具有排斥型奇性的中立型Liénard方程周期正解的存在性. 应用数学, 2018, 31(3):481-489(Lu shiping, Niu Liang, Guo Yuanzhi, Chen Lijuan. Existence of Positive Periodic solutions for Neutral lienard equations with a Singularity of Repulsive Type. Mathematica Applicata, 2018, 31(3):481-489) | [22] | Martins R. Existence of periodic solutions for second-order differential equations with singularities and the strong force condition. J. Math. Anal. Appl., 2016, 317:1-13 | [23] | Hakl R, Torres P J, Zamora M. Periodic solutions of singular second order differential equations:the repulsive case. TOpol. Methods Nonlinear Anal., 2012, 39:199-220 | [24] | Lu S, Kong F. Periodic solutions for a king of prescribed mean curvature Liénard equations with a singularity and a deviating argument. Adv. Differ. Equ., 2015, 151, https://doi.org/10.1186/s13662-015-0474-y | [25] | Wang, Z. Periodic solutions of Liénard equation with a singularity ang a deviating argument. Nonlinear Anal., Real World Appl., 2014, 16(1):227-234 | [26] | Hakl R, Zamora M. Periodic solutions to second-order indefinite singular equations. J. Differential Equations, 2017, 263:451-469 | [27] | Hakl R, Zamora M. Existence and uniqueness of a periodic solution to an indefinite attractive singular equation. Ann. Mat. Pura Appl., 2016, 195:995-1009 | [28] | Manasevich R, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian-like operator. J. Differential Equations, 1998, 145:367-393 |
[1] | 许丽, 崔德标. 二阶奇异差分系统的正周期解[J]. 应用数学学报, 2019, 42(3): 289-296. | [2] | 王丽, 王博乾. 一类Lasota-Wazewska模型渐近概周期解的研究[J]. 应用数学学报, 2019, 42(3): 297-304. | [3] | 杨炜明, 廖书. 含有预防接种的霍乱时滞模型的稳定性和hopf分支分析[J]. 应用数学学报, 2018, 41(6): 735-749. | [4] | 孟益民, 黄立宏, 郭上江. 具分布时滞双向联想记忆神经网络周期解的存在性及全局稳定性[J]. 应用数学学报, 2018, 41(3): 369-387. | [5] | 刘炳文, 田雪梅, 杨孪山, 黄创霞. 具有非线性死亡密度和连续分布时滞的Nicholson飞蝇模型的周期解[J]. 应用数学学报, 2018, 41(1): 98-109. | [6] | 周辉, 王文, 周宗福. 具非线性收获项和S-型时滞Lasota-Wazewska模型的概周期解[J]. 应用数学学报, 2017, 40(3): 471-480. | [7] | 胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688. | [8] | 田德生. 一类二阶时滞微分方程多个周期解的存在性[J]. 应用数学学报, 2016, 39(4): 537-546. | [9] | 廖华英, 徐向阳, 胡启宙. 对"一类带收获率的离散时滞人口模型正周期解存在性"的探究[J]. 应用数学学报, 2016, 39(4): 598-609. | [10] | 廖华英, 周正. 一类带收获项的离散Lotka-Volterra合作系统的四个正周期解[J]. 应用数学学报, 2016, 39(3): 441-451. | [11] | 吕小俊, 张天伟, 赵凯宏. 研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性[J]. 应用数学学报, 2016, 39(2): 237-248. | [12] | 孙树林, 段晓祥. 水体富营养化状态脉冲控制系统周期解的存在性和唯一性[J]. 应用数学学报, 2016, 39(1): 138-152. | [13] | 欧伯群, 姚晓洁. 一类中立型Cohen-Grossberg神经网络概周期解的存在唯一性[J]. 应用数学学报, 2015, 38(2): 212-221. | [14] | 李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52. | [15] | 陈娟. 一类非线性Schödinger方程的Jacobi椭圆函数周期解[J]. 应用数学学报(英文版), 2014, 37(4): 656-661. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14628
任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类Lasota-Wazewska模型渐近概周期解的研究王丽,王博乾西北工业大学理学院,西安710072OntheStudyofAsymptoticallyAlmostPeriodicSolutionofaClassofLasota-WazewskaModelWANGLi,WANGBoqianSch ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四阶差分方程周期边值问题的Green函数蒋玲芳,刘爱华乐山职业技术学院数学教研室,乐山614000TheGreen'sFunctionofFourth-orderDifferenceEquationwithPeriodicBoundaryValueProblemJIANGLingfang,LIUAi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有两个小世界联接的时滞环形神经网络系统的稳定性分析李敏,赵东霞,毛莉中北大学理学院数学学科部,太原030051StabilityAnalysisofaDelayedRingNeuralNetworkwithTwoSmallWorldConnectionsLIMin,ZHAODongxia,MAOL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27离散切换正时滞系统在异步切换下的镇定性刘婷婷1,吴保卫2,刘丽丽2,王月娥21.西安工程大学理学院,西安710048;2.陕西师范大学数学与信息科学学院,西安710119StabilizationofDiscreteSwitchedPositiveTime-delaySystemsUnderAsyn ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统魏利1,张瑞兰1,RaviP.Agarwal2,31.河北经贸大学数学与统计学学院,石家庄050061;2.DepartmentofMathematics,TexasA&MUniversity-Kingsville,Kingsvi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|