[1] Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks[J]. arXiv preprint arXiv:1211.5063, 2013.[2] E W. A proposal on machine learning via dynamical systems[J]. Communications in Mathematics and Statistics, 2017, 5(1):1-11.[3] Li Q, Chen L, Tai C, E W. Maximum principle based algorithms for deep learning[J]. The Journal of Machine Learning Research, 2017, 18(1):5998-6026.[4] Ruthotto L, Haber E. Deep neural networks motivated by partial differential equations[J]. arXiv preprint arXiv:1804.04272, 2018.[5] Lu Y, Zhong A, Li Q, Dong B. Beyond finite layer neural networks:Bridging deep architectures and numerical differential equations[J]. arXiv preprint arXiv:1710.10121, 2017.[6] Zhong Y D, Dey B, Chakraborty A. Symplectic ODE-Net:Learning Hamiltonian Dynamics with Control[J]. arXiv preprint arXiv:1909.12077, 2019.[7] Lutter M, Ritter C, Peters J. Deep lagrangian networks:Using physics as model prior for deep learning[J]. arXiv preprint arXiv:1907.04490, 2019.[8] Keller R, Du Q. Discovery of Dynamics Using Linear Multistep Methods[J]. arXiv preprint arXiv:1912.12728, 2019.[9] Li S, Dong C, Zhang L, Wang L. Neural Canonical Transformation with Symplectic Flows[J]. arXiv preprint arXiv:1910.00024, 2019.[10] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378:686-707.[11] Zhang D, Lu L, Guo L, Karniadakis G E. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems[J]. Journal of Computational Physics, 2019, 397:108850.[12] Pang G, Lu L, Karniadakis G E. fpinns:Fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4):A2603-A2626.[13] E W, Yu B. The deep Ritz method:a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1):1-12.[14] Raissi M, Perdikaris P, Karniadakis G E. Multistep neural networks for data-driven discovery of nonlinear dynamical systems[J]. arXiv preprint arXiv:1801.01236, 2018.[15] Chen T Q, Rubanova Y, Bettencourt J, Duvenaud D K. Neural ordinary differential equations[J]. arXiv preprint arXiv:1806.07366, 2018.[16] Greydanus S, Dzamba M, Yosinski J. Hamiltonian neural networks[J]. arXiv preprint arXiv:1906.01563, 2019.[17] Sakurai J J, Commins E D. Modern quantum mechanics, revised edition[M], 1995.[18] Arnold V I, Kozlov V V, Neishtadt A I. Mathematical aspects of classical and celestial mechanics[M], volume 3. Springer Science & Business Media, 2007.[19] Reichl L E. A modern course in statistical physics[M], 1999.[20] Toth P, Rezende D J, Jaegle A, Racanière S, Botev A, Higgins I. Hamiltonian generative networks[J]. arXiv preprint arXiv:1909.13789, 2019.[21] Sanchez-Gonzalez A, Bapst V, Cranmer K, Battaglia P. Hamiltonian graph networks with ode integrators[J]. arXiv preprint arXiv:1909.12790, 2019.[22] Rezende D J, Racanière S, Higgins I, Toth P. Equivariant Hamiltonian Flows[J]. arXiv preprint arXiv:1909.13739, 2019.[23] Bertalan T, Dietrich F, Mezi? I, Kevrekidis I G. On learning Hamiltonian systems from data[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2019, 29(12):121107.[24] Arnold V I. Mathematical methods of classical mechanics[M]. Springer Science & Business Media, 2013.[25] Chen Z, Zhang J, Arjovsky M, Bottou L. Symplectic Recurrent Neural Networks[J]. arXiv preprint arXiv:1909.13334, 2019.[26] Feng K. On difference schemes and symplectic geometry[C]. In Proceedings of the 5th international symposium on differential geometry and differential equations, 1984.[27] Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. Journal of Computational Mathematics, 1986, 4(3):279-289.[28] Feng K. Collected Works of Feng Kang:II[M]. National Defense Industry Press, 1995.[29] Hairer E, Lubich C, Wanner G. Geometric numerical integration:structure-preserving algorithms for ordinary differential equations[M]. Springer Science & Business Media, 2006.[30] Koch O, Lubich C. Dynamical low-rank approximation[J]. SIAM Journal on Matrix Analysis and Applications, 2007, 29(2):434-454.[31] Lubich C. From quantum to classical molecular dynamics:reduced models and numerical analysis[M]. European Mathematical Society, 2008.[32] Feng K, Qin M. Symplectic geometric algorithms for Hamiltonian systems[M]. Springer, 2010.[33] Zhu B, Zhang R, Tang Y, Tu X, Zhao Y. Splitting K-symplectic methods for non-canonical separable Hamiltonian problems[J]. Journal of Computational Physics, 2016, 322:387-399.[34] Sanz-Serna J M, Calvo M P. Numerical Hamiltonian problems[M]. Courier Dover Publications, 2018.[35] Omelyan I, Mryglod I, Folk R. Symplectic analytically integrable decomposition algorithms:classification, derivation, and application to molecular dynamics, quantum and celestial mechanicssimulations[J]. Computer Physics Communications, 2003, 151(3):272-314.[36] Faou E, Gradinaru V, Lubich C. Computing semiclassical quantum dynamics with Hagedorn wavepackets[J]. SIAM Journal on Scientific Computing, 2009, 31(4):3027-3041.[37] Zhang R, Liu J, Tang Y, Qin H, Xiao J, Zhu B. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields[J]. Physics of Plasmas, 2014, 21(3):032504.[38] Qin H, Liu J, Xiao J, Zhang R, He Y, Wang Y, Sun Y, Burby J W, Ellison L, Zhou Y. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations[J]. Nuclear Fusion, 2015, 56(1):014001.[39] Barron A R. Universal approximation bounds for superpositions of a sigmoidal function[J]. IEEE Transactions on Information theory, 1993, 39(3):930-945.[40] Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of control, signals and systems, 1989, 2(4):303-314.[41] Bottou L, Bousquet O. The tradeoffs of large scale learning[C]. In Advances in neural information processing systems 2007.[42] Bottou L. Large-scale machine learning with stochastic gradient descent[G]. In Proceedings of COMPSTAT'2010.[43] Jin P, Lu L, Tang Y, Karniadakis G E. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness[J]. Neural Networks, 2020, 130:85-99.[44] Poggio T, Liao Q. Theory II:Landscape of the empirical risk in deep learning[D]. PhD thesis, Center for Brains, Minds and Machines (CBMM), arXiv, 2017.[45] Lee J D, Simchowitz M, Jordan M I, Recht B. Gradient descent converges to minimizers[J]. arXiv preprint arXiv:1602.04915, 2016.[46] Diederik P, Kingma, Ba J. Adam:A Method for Stochastic Optimization[J]. 3rd International Conference on Learning Representations, ICLR 2015. |