[1] Abenda S. Solitary waves for Maxwell-Dirac and Coulomb-Dirac models[C]. Annales de l'Institut Henri Poincare-A Physique Theorique. Paris:Gauthier-Villars, c1983-c1999., 1998, 68(2):229.[2] Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory[J]. Physical Review, 1959, 115(3):485-491.[3] Bao W, Li X G. An efficient and stable numerical method for the Maxwell-Dirac system[J]. Journal of Computational Physics, 2004, 199(2):663-687.[4] Bechouche P, Mauser N J. (Semi)-nonrelativistic limits of the Dirac equation with external timedependent electromagnetic field[J]. Communications in Mathematical Physics, 1998, 197(2):405-425.[5] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic Analysis for Periodic Structures[M]. North-Holland, Amsterdam, 1978.[6] Bernevig B A, Hughes T L. Topological Insulators and Topological Superconductors[M]. Princeton University Press, 2013.[7] Bjorken J D, Drell S D. Relativistic Quantum Mechanics[M]. McGraw-Hill, 1965.[8] Cao L Q, Zhang Y, Allegretto W and Lin Y P. Multiscale asymptotic method for Maxwell's equations in composite materials[J]. SIAM Journal on Numerical Analysis, 2010, 47(6):4257-4289.[9] Chadam J M. Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension[J]. Journal of Functional Analysis, 1973, 13(2):173-184.[10] Chadam J M, Glassey R T. On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions[J]. Journal of Mathematical Analysis and Applications, 1976, 53(3):495-507.[11] Cioranescu D, Donato P. An Introduction to Homogenization, volume 17 of Oxford Lecture Series in Mathematics and its Applications[J]. The Clarendon Press Oxford University Press, New York, 2000, 10(31):106-109.[12] D'Ancona P, Foschi D, Selberg S. Null structure and almost optimal local well-posedness of the Maxwell-Dirac system[J]. American Journal of Mathematics, 2010, 132(3):771-839.[13] D'Ancona P, Selberg S. Global well-posedness of the Maxwell-Dirac system in two space dimensions[J]. Journal of Functional Analysis, 2011, 260(8):2300-2365.[14] Esteban M J, Georgiev V, Séré E. Stationary solutions of the Maxwell-Dirac and the KleinGordon-Dirac equations[J]. Calculus of Variations and Partial Differential Equations, 1996, 4(3):265-281.[15] Esteban M J, Séré E. An overview on linear and nonlinear Dirac equations[J]. Discrete & Continuous Dynamical Systems-A, 2002, 8(2):381-397.[16] Flato M, Taflin E, Simon J. On global solutions of the Maxwell-Dirac equations[J]. Communications in Mathematical Physics, 1987, 112(1):21-49.[17] Georgiev V. Small amplitude solutions of the Maxwell-Dirac equations[J]. Indiana University Mathematics Journal, 1991:845-883.[18] Gerry C, Knight P, Knight P L. Introductory Quantum Optics[M]. Cambridge University Press, 2005.[19] Glassey R T, Chadam J M. Properties of the solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension[J]. Proceedings of the American Mathematical Society, 1974, 43(2):373-378.[20] Gross L. The cauchy problem for the coupled maxwell and dirac equations[J]. Communications on Pure & Applied Mathematics, 1966, 19(1):1-15.[21] Huang Z, Jin S, Markowich P A, et al. A time-splitting spectral scheme for the Maxwell-Dirac system[J]. Journal of Computational Physics, 2005, 208(2):761-789.[22] Katsnelson M I, Katsnel'son M I. Graphene:Carbon in Two Dimensions[M]. Cambridge University Press, 2012.[23] Lisi A G. A solitary wave solution of the Maxwell-Dirac equations[J]. Journal of Physics A:Mathematical and General, 1995, 28(18):5385.[24] McLachlan R I, Quispel G R W. Splitting methods[J]. Acta Numerica, 2002, 11(11):341-434.[25] Oleinik O A, Shamaev A S, Yosifian G A. Mathematical Problems in Elasticity and Homogenization[M]. North-Holland, Amsterdam, 1992.[26] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4):1057.[27] Raza H. Graphene Nanoelectronics:Metrology, Synthesis, Properties and Applications[M]. Springer Science & Business Media, 2012.[28] Roche S, Valenzuela S O. Topological Insulators:Fundamentals and Perspectives[M]. John Wiley & Sons, 2015.[29] Shen S Q. Topological Insulators[M]. New York:Springer, 2012.[30] Shen S Q, Shan W Y, Lu H Z. Topological Insulator and the Dirac Equation[C]. Spin. World Scientific Publishing Company, 2011, 1(01):33-44.[31] Sparber C, Markowich P. Semiclassical asymptotics for the Maxwell-Dirac system[J]. Journal of Mathematical Physics, 2003, 44(10):4555-4572.[32] Strang G. On the construction and comparison of difference schemes[J]. SIAM Journal on Numerical Analysis, 1968, 5(3):506-517.[33] Thaller B. The Dirac Equation[M]. Springer Science & Business Media, 2013.[34] Wakano M. Intensely localized solutions of the classical Dirac-Maxwell field equations[J]. Progress of Theoretical Physics, 1966, 35(6):1117-1141.[35] Zhang Y, Cao L Q, Wong Y S. Multiscale computations for 3d time-dependent Maxwell's equations in composite materials[J]. SIAM Journal on Scientific Computing, 2010, 32(5):2560-2583.[36] Zhang L, Cao L Q, and Luo J L. Multiscale analysis and computation for a stationary SchrödingerPoisson system in heterogeneous nanostructures[J]. Multiscale Modeling & Simulation, 2014, 12(1):1561-1591. |