摘要/Abstract
不对称催化是最为高效的手性合成策略.尽管目前已发展了多种催化剂实现了许多不对称转化,但大多数优异的手性催化剂和不对称催化反应体系的开发都是在大量反应筛选的基础上获得的.如何有效获得具有更高活性和选择性的催化剂仍是一个挑战.近年来,物理有机化学和计算化学的高速发展极大地助推了对反应机理和选择性起源的研究,为理性设计催化剂提供了可能.简要地介绍了近年来手性催化剂理性设计方面的一些代表性工作,主要包括基于构效关系分析理性设计、基于反应机理研究的理性设计和生物酶催化剂的计算设计等.
关键词: 不对称催化, 理性设计, 有机小分子催化, 金属催化, 酶催化
Asymmetric catalysis is the most efficient chiral synthesis strategy. Chemists have already developed a variety of catalysts to achieve many asymmetric transformations. However, most of the deveoped chiral catalysts and the asymmetric catalytic reactions were developed on the basis of trios-errors approaches involving massive random screening. How to effectively obtain catalysts with higher activity and selectivity is still a challenge. In recent years, the rapid development of physical organic chemistry and computational chemistry has greatly facilitated the study of the reaction mechanism and the origin of selectivity, setting basis for rational catalyst design and evolution. This review will briefly introduce some representative works on the rational design of chiral catalysts in recent years, including rational design based on structure-activity relationship analysis, rational design based on reaction mechanism research, and computational design of enzymes.
Key words: asymmetric catalysis, rational design, organocatalysis, metal catalysis, enzyme catalysis
PDF全文下载地址:
点我下载PDF