删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

智能车辆运动控制系统协同设计

清华大学 辅仁网/2017-07-07

智能车辆运动控制系统协同设计
郭景华, 罗禹贡, 李克强
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Collaborative design of a motion control system for intelligent vehicles
GUO Jinghua, LUO Yugong, LI Keqiang
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要该文建立可准确表征智能车辆横纵向动力学行为特性的数学模型, 揭示智能车辆行驶过程中的耦合机理。在此基础上, 针对智能车辆具有强耦合、非线性和参数不确定等特点, 提出一种由协调控制层、控制分配层和伺服执行层构成的协同控制策略, 通过横纵向动力学系统之间的动态耦合及协同进行能量的传递、转换及演变, 完成智能车辆横纵向运动一体化控制。通过仿真试验进行验证和评价, 试验结果表明: 所设计的控制系统不仅具有良好的稳态精度和动态响应性能, 而且可显著提高智能车辆行驶过程中的稳定性、舒适性和安全性。
关键词 智能车辆,耦合,横纵向控制,协同设计
Abstract:A dynamic control model is developed for intelligent vehicles which accurately describes the lateral and longitudinal motion characteristics. The strongly coupled, nonlinear problem with very uncertain parameter values for intelligent vehicles is modelled as a multi-layer coordinated control system of the lateral and longitudinal vehicle dynamics. Simulations are used to verify the control system with the simulation results showing that the control system has excellent tracking ability and enhanced stability, comfort and safety of intelligent vehicles.
Key wordsintelligent vehiclecouplinglateral and longitudinal controlcollaborative design
收稿日期: 2014-05-29 出版日期: 2015-09-18
ZTFLH:U461.1
通讯作者:李克强,教授,E-mail:likq@tsinghua.edu.cnE-mail: likq@tsinghua.edu.cn
引用本文:
郭景华, 罗禹贡, 李克强. 智能车辆运动控制系统协同设计[J]. 清华大学学报(自然科学版), 2015, 55(7): 761-768.
GUO Jinghua, LUO Yugong, LI Keqiang. Collaborative design of a motion control system for intelligent vehicles. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 761-768.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I7/761


图表:
图1 控制映射
图2 参考路径和前引速度
图3 不同控制系统的状态响应曲线
图4 轮胎横纵向力分配结果
图5 滑移率/侧偏角跟踪结果


参考文献:
[1] Wu S J, Chiang H H, Perng J W, et al. The heterogeneous systems integration design and implementation for lane keeping on a vehicle [J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 246-263.
[2] Perez J, Milanes V, Onieva E. Cascade architecture for lateral control in autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 73-82.
[3] Onieva E, Naranjo J E, Milanes V, et al. Automatic lateral control for unmanned vehicles via genetic algorithms [J]. Applied Soft Computing, 2011, 11(1): 1303-1309.
[4] Huang J, Tomizuka M. LTV controller design for vehicle lateral control under fault in rear sensor [J]. IEEE Transactions on Mechatronics, 2005, 10(1): 1-7.
[5] 宾洋, 李克强, 冯能莲. 车辆全速巡航系统的干扰解耦鲁棒控制 [J]. 中国科学E辑: 技术科学, 2009, 29(12): 1963-1982. BIN Yang, LI Keqiang, FENG Nenglian. Disturbance decoupling robust control of vehicle full speed cruise dynamic system [J]. Sci Chian E: Tech Sci, 2009, 29(12): 1963 -1982. (in Chinese)
[6] Wang J, Zhang L, Zhang D, et al. An adaptive longitudinal driving assistance system based on driver characteristics [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 1-12.
[7] Nouveliere L, Mammar S. Experimental vehicle longitudinal control using a second order sliding mode technique [J]. Control Engineering Practice, 2007, 15(8): 943-954.
[8] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design [M]. New York: Wiley, 1995.
[9] Petersen J, Bodson M. Constrained quadratic programming techniques for control allocation [J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 91-98.
[10] Harkegard O, Glad S. Resolving actuator redundancy-optimal control vs control allocation [J]. Automatica, 2005, 41(1): 137-144.
[11] Rajamani R. Vehicle Dynamics and Control [M]. Berlin: Springer, 2006.
[12] Wang J, Longoria R G. Coordinated and reconfigurable vehicle dynamics control [J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 723-732.


相关文章:
No related articles found!

相关话题/智能 车辆 控制 设计 运动