双曲线冷却塔施工期设计风荷载的确定 |
张明1, 王菲1, 李庆斌1, 汤东升2 |
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084; 2. 广东省电力设计研究院, 广州 510663 |
Design wind loads on hyperbolic cooling towers during construction |
ZHANG Ming1, WANG Fei1, LI Qingbin1, TANG Dongsheng2 |
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; 2. Guangdong Electric Power Design Institute, Guangzhou 510663, China |
摘要:
| |||
摘要以结构可靠性设计的基本理论为基础, 以双曲线冷却塔塔筒施工期和设计基准期内具有相同的可靠度为前提, 研究塔筒施工期设计风荷载的取值标准问题。根据风荷载平稳二项随机过程模型的特点, 利用结构可靠度的时段分析方法分别建立结构设计基准期及其间各时段可靠度的关系以及施工期及其间各时段可靠度的关系。从施工期与设计基准期的结构抗力成比例入手, 按照规范中的分项系数设计方法的要求, 得到施工期风荷载标准值与设计基准期风荷载标准值同样成比例的结论。建议了该比例系数即施工期风荷载因子的求解步骤, 并针对冷却塔的实际受力情况和基本随机变量的不同分布类型做了计算。计算结果表明: 施工期风荷载因子随施工期的延长而增大, 随抗力分项系数的增大而减小, 其与施工期的关系可用对数函数来拟合。根据施工期风荷载因子的拟合函数式或相应简化表格即可确定双曲线冷却塔施工期的设计风荷载。 | |||
关键词 :结构可靠度,双曲线冷却塔,施工期,设计风荷载,风荷载标准值,分项系数设计 | |||
Abstract:The fundamental theory of structural reliability was used to predict the design wind load on hyperbolic cooling towers during construction to give the same reliability during construction as for the design reference period. The relationships between the reliability for the design reference period for various time intervals and the reliability during construction for various time intervals are given based on the time interval method for analyzing the structural reliability using the stationary binomial stochastic process model for wind loads. The structural resistance during construction is found to be proportional to that of the design reference period. The characteristic wind loads also preserve the proportionality relation with the wind load factor during construction defined in this paper using partial safety factor design expressions for these two periods. A general wind load factor solution procedure was given and the predicted wind load factors were computed for typical probabilistic distributions of the random variables. The wind load factor increases with the extension of the construction cycle or with a lower resistance partial safety factor. The relationship between the wind load factor and the construction time is well fit by a logarithmic function. The design wind load for hyperbolic cooling towers during construction can be determined with the correlations or simplified tables of the wind load factor. | |||
Key words:structural reliabilityhyperbolic cooling towerconstruction perioddesign wind loadcharacteristic value of wind loadpartial safety factor design | |||
收稿日期: 2013-12-21 出版日期: 2016-01-12 | |||
|
引用本文: |
张明, 王菲, 李庆斌, 汤东升. 双曲线冷却塔施工期设计风荷载的确定[J]. 清华大学学报(自然科学版), 2015, 55(12): 1281-1288. ZHANG Ming, WANG Fei, LI Qingbin, TANG Dongsheng. Design wind loads on hyperbolic cooling towers during construction. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1281-1288. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.24.003或 http://jst.tsinghuajournals.com/CN/Y2015/V55/I12/1281 |
图表:
图1 风荷载因子k 与抗力分项系数γR 、施工期Tc的关系(β=βc=3.2) |
图2 抗力分项系数γR=1.15时风荷载因子k与施工期Tc的关系 (β=βc=3.2) |
参考文献:
[1] Mungan I, Wittek U. Natural Draught Cooling Towers [C]// Proceedings of the Fifth International Symposium on Natural Draught Cooling Towers. Rotterdam, The Netherlands: A A Balkema Publishers, 2004. [2] ZHAO Lin, GE Yaojun. Wind loading characteristics of super-large cooling towers [J]. Wind and Structures, An International Journal, 2010, 13(3): 257-273. [3] Orlando M. Wind-induced interference effects on two adjacent cooling towers [J]. Engineering Structures, 2001, 23(8): 979-992. [4] Sabbagh-Yazdi S R, Torbati M, Azad F M,et al.Computer simulation of changes in the wind pressure due to cooling towers-buildings interference [J]. WSEAS Transactions on Mathematics, 2007, 6(1):205-214. [5] Blazik-Borowa E. Computational fluid dynamic simulation of the pressure distribution on the natural draught cooling tower shell [J]. Archives of Civil Engineering, 2007, 53(2): 225-241. [6] Zahlten W, Borri C.Time-domain simulation of the non-linear response of cooling tower shells subjected to stochastic wind loading [J]. Engineering Structures, 1998, 20(10): 881-889. [7] 廖汶, 卢文达, 刘人怀. 双曲冷却塔结构非线性有限元可靠度分析 [J]. 工程力学, 1999, 16(1):49-55. LIAO Wen, LU Wenda, LIU Renhuai. Finite element reliability analysis of hyperbolic cooling towers [J]. Engineering Mechanics, 1999, 16(1): 49-55.(in Chinese) [8] 李国强, 黄宏伟, 吴讯, 等. 工程结构荷载与可靠度设计原理 [M]. 第2版. 北京: 中国建筑工业出版社, 2008.LI Guoqiang, HUANG Hongwei, WU Xun, et al. Engineering Structural Loads and Reliability Design Principle [M]. 2nd Ed. Beijing: China Architecture & Building Press, 2008. (in Chinese) [9] 张明. 结构可靠度分析: 方法与程序 [M]. 北京: 科学出版社, 2009. ZHANG Ming. Structural Reliability Analysis: Methods and Procedures [M]. Beijing: Science Press, 2009.(in Chinese) [10] 卢红前. 大型双曲线冷却塔施工期风筒强度及局部稳定验算 [J]. 武汉大学学报: 工学版, 2007, 40(增): 414-419.LU Hongqian. Analysis of tower wall strength and local stability of alarge hyperbolic cooling tower during construction [J]. Engineering Journal of Wuhan University, 2007, 40(S): 414-419.(in Chinese) [11] GB50068-2001. 建筑结构可靠度设计统一标准 [S]. 北京: 中华人民共和国建设部, 2001.GB50068-2001. Unified Standard for Reliability Design of Building Structures [S]. Beijing: Ministry of Housing and Urban-Rural Development of People's Republic of China. (in Chinese) [12] GB50009-2012. 建筑结构荷载规范 [S]. 北京: 中华人民共和国住房与城乡建设部, 2012.GB50009-2012. Load Code for the Design of Building Structures [S]. Beijing: Ministry of Housing and Urban- Rural Development of People's Republic of China. (in Chinese) [13] GB/T50102-2014. 工业循环水冷却设计规范 [S]. 北京: 中华人民共和国住房与城乡建设部, 2014.GB/T50102-2014.Code for Design of Cooling for Industrial Recirculating Water [S]. Beijing: Ministry of Housing and Urban-Rural Development of People's Republic of China.(in Chinese) [14] 姚继涛. 结构可靠度的时段分析法 [J]. 土木工程学报, 2005, 38(7): 1-5.YAO Jitao. Time-interval method for analyzing structural reliability [J]. China Civil Engineering Journal, 2005, 38(7): 1-5.(in Chinese) [15] 胡德炘. 建筑结构概率极限状态设计法 [J]. 建筑科学, 1986 (2): 20-28.HU Dexin. The probability-based limit state design method for building structures [J]. Building Science, 1986 (2): 20-28. (in Chinese) |
相关文章:
|