删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

刷式密封流场和温度场的3维数值计算

清华大学 辅仁网/2017-07-07

刷式密封流场和温度场的3维数值计算
黄首清1,索双富1,李永健1(),顾新民2,王玉明1
2. 江苏透平密封高科技有限公司, 南京 210046
Numerical predictions of the flow and temperature distributions in a three-dimensional brush seal model
Shouqing HUANG1,Shuangfu SUO1,Yongjian LI1(),Xinmin GU2,Yuming WANG1
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
2. Jiangsu Turbine Seal High-Technology Co., Ltd, Nanjing 210046, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要该文建立了一种刷式密封的3维模型,结合 ANSYS 系列商用软件,利用计算流体动力学(CFD)方法计算了刷式密封的流场和温度场。研究了刷丝排数对泄漏量的影响,对刷丝排数为14排,厚0.93 mm的刷式密封进行了流场和温度场计算,重点研究了刷丝间隙中的流动和刷丝及刷丝间隙中温度分布的细节及规律,讨论了不同工况参数及压差、干涉量、线速度对最高温度的影响。结果表明: 随着刷丝排数的增加,泄漏量先呈指数下降,后呈趋缓的线性下降,最后基本趋于稳定。干涉量和线速度对最高温度的影响更为明显。

关键词 刷式密封,流场,温度场,3维模型,工况参数
Abstract:The flow and temperature distributions in a brush seal are predicted using a three-dimensional computational fluid dynamics (CFD) model with software ANSYS. The results show the effect of the number of bristles rows on the leakage and the flow and temperature distributions in the brush seal (14 rows, 0.93 mm thick). The results relate the characteristics of the flow and temperature distributions around the bristles to the clearances between bristles and the influence of various operating parameters (pressure differential, interference, linear speed) on the maximum temperature. Results show that as the bristle row number increases, the leakage first decreases exponentially, then decreases linearly and slowly, and tends to a stable value in the end. The effects of interference and linear speed on the maximum temperature are more obvious.

Key wordsbrush sealflow distributiontemperature distributionthree-dimensional modeloperation-parameter
收稿日期: 2013-08-27 出版日期: 2015-03-17
基金资助:国家自然科学基金资助项目 (51305224)
引用本文:
黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
Shouqing HUANG,Shuangfu SUO,Yongjian LI,Xinmin GU,Yuming WANG. Numerical predictions of the flow and temperature distributions in a three-dimensional brush seal model. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 805-810.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I6/805


图表:
刷式密封的切片式3维模型
刷丝束区域的横截面图(沿轴向)
参数 数值
刷丝安装角φ/(°) 45
刷丝直径d/mm 0.07
刷丝间隙δ/mm 0.007
刷丝径向跨度H/mm 3
刷丝长度L/mm 4.24
背板保护间隙Hb/mm 1.5
刷丝悬垂长度Lb/mm 2.12
入口压力Pu/Pa 501 325
入口温度Tu/K 300
出口压力Pd/Pa 101 325
出口温度Td/K 300
刷丝根部温度Tr/K 300
刷丝根部流体温度Tw/K 300
刷丝排数n 6~26,取偶数


几何及边界参数
编号 压差
Δp
/MPa
硬度Kb
/(MPa·m-1)
干涉量
Δr/mm
线速度
v/(m·s-1)
摩擦热流密度
q/(kW·s-2)
1 0.1 271.45 0.20 5.95 97
2 0.2 542.90 0.25 11.91 485
3 0.3 814.34 0.30 23.81 1 745
4 0.4 1 085.79 0.35 47.63 5 430


不同工况下的摩擦热流密度
刷丝及其间隙的局部网格剖分
刷丝排数与泄漏量的关系
对称面的压力云图
对称面的流速矢量图
刷丝束横截面的压力云图和速度矢量图(距刷丝尖端0.7 mm)
刷丝束与背板间的压力云图
刷丝束与背板间的速度矢量图
刷丝表面的温度云图
刷丝表面的径向温度分布
压差Δp对最高温度Tmax的影响
干涉量Δr对最高温度Tmax的影响
线速度v对最高温度Tmax的影响


参考文献:
[1] Bayley F J, Long C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal[J]. ASME Journal of Engineering for Gas Turbine and Power, 1993, 115(2): 404-410.
[2] Lelli D, Chew J W, Cooper P. Combined 3D fluid dynamics and mechanical modeling of brush seals [C]// GT 2005-68973. ASME Turbo Expo 2005: Power for Land, Sea and Air. Reno-Tahoe, USA, 2005.
[3] Dogu Y, Aksit M F. Brush seal temperature distribution analysis[J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 128(3): 559-609.
[4] 邱波, 李军. 刷式密封传热特性研究[J]. 西安交通大学学报, 2011, 45(9): 94-100. QIU Bo, LI Jun. Investigation on the heat transfer characteristics of brush seals[J].Journal of Xi'an Jiaotong University, 2011, 45(9): 94-100. (in Chinese)
[5] Chew J W, Lapworth B L, Millener P J. Mathematical modeling of brush seals[J]. International Journal of Heat and Fluid Flow, 1995, 16(6): 493-500.
[6] Dogu Y. Investigation of brush seal flow characteristics using bulk porous medium approach[J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 136-144.
[7] 李理科, 王之栎, 宋飞, 等. 刷式密封温度场数值研究[J]. 航空动力学报, 2010, 25(5): 1018-1024. LI Like, WANG Zhili, SONG Fei, et al.Numerical investigation of temperature field in brush seals[J]. Journal of Aerospace Power, 2010, 25(5): 1018-1024. (in Chinese)
[8] Chew J W, Guardino C. Simulation of flow and heat transfer in the tip region of a brush seal[J]. International Journal of Heat Fluid Flow, 2004, 25: 649-658.
[9] Franceschini G, Jones T V, Gillespie D R H. Improved understanding of blow-down in filament seals [C]// GT 2008-51197. ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany, 2008.
[10] Bidkar A R, Zheng X, Demiroglu M, et al. Stiffness measurement for pressure-loaded brush seals [C]// GT 2011-45399. ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada, 2011.
[11] Pugachev A O, Deckner M. CFD prediction and test results of stiffness and damping coefficients for brush-labyrinth gas seals [C]// GT 2010-22667. ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK, 2010.
[12] 陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006. TAO Wenquan. Heat Transfer [M]. Xi'an, China: North Western Polytechnical University Press, 2006. (in Chinese)


相关文章:
[1]林鹏,胡杭,郑东,李庆斌. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[2]左正,胡昱,李庆斌,李炳锋,黄涛. 基于实际通水监测的大体积混凝土数字温度监测[J]. 清华大学学报(自然科学版), 2015, 55(1): 21-26.

相关话题/计算 混凝土 理科 航空 传热