|
|
刷式密封流场和温度场的3维数值计算 |
黄首清1,索双富1,李永健1(),顾新民2,王玉明1 |
2. 江苏透平密封高科技有限公司, 南京 210046 |
|
Numerical predictions of the flow and temperature distributions in a three-dimensional brush seal model |
Shouqing HUANG1,Shuangfu SUO1,Yongjian LI1(),Xinmin GU2,Yuming WANG1 |
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China 2. Jiangsu Turbine Seal High-Technology Co., Ltd, Nanjing 210046, China |
|
文章导读 |
|
摘要该文建立了一种刷式密封的3维模型,结合 ANSYS 系列商用软件,利用计算流体动力学(CFD)方法计算了刷式密封的流场和温度场。研究了刷丝排数对泄漏量的影响,对刷丝排数为14排,厚0.93 mm的刷式密封进行了流场和温度场计算,重点研究了刷丝间隙中的流动和刷丝及刷丝间隙中温度分布的细节及规律,讨论了不同工况参数及压差、干涉量、线速度对最高温度的影响。结果表明: 随着刷丝排数的增加,泄漏量先呈指数下降,后呈趋缓的线性下降,最后基本趋于稳定。干涉量和线速度对最高温度的影响更为明显。
|
关键词 :刷式密封,流场,温度场,3维模型,工况参数 |
Abstract:The flow and temperature distributions in a brush seal are predicted using a three-dimensional computational fluid dynamics (CFD) model with software ANSYS. The results show the effect of the number of bristles rows on the leakage and the flow and temperature distributions in the brush seal (14 rows, 0.93 mm thick). The results relate the characteristics of the flow and temperature distributions around the bristles to the clearances between bristles and the influence of various operating parameters (pressure differential, interference, linear speed) on the maximum temperature. Results show that as the bristle row number increases, the leakage first decreases exponentially, then decreases linearly and slowly, and tends to a stable value in the end. The effects of interference and linear speed on the maximum temperature are more obvious.
|
Key words:brush sealflow distributiontemperature distributionthree-dimensional modeloperation-parameter |
收稿日期: 2013-08-27 出版日期: 2015-03-17 |
基金资助:国家自然科学基金资助项目 (51305224) |
[1] | Bayley F J, Long C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal[J]. ASME Journal of Engineering for Gas Turbine and Power, 1993, 115(2): 404-410. |
[2] | Lelli D, Chew J W, Cooper P. Combined 3D fluid dynamics and mechanical modeling of brush seals [C]// GT 2005-68973. ASME Turbo Expo 2005: Power for Land, Sea and Air. Reno-Tahoe, USA, 2005. |
[3] | Dogu Y, Aksit M F. Brush seal temperature distribution analysis[J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 128(3): 559-609. |
[4] | 邱波, 李军. 刷式密封传热特性研究[J]. 西安交通大学学报, 2011, 45(9): 94-100. QIU Bo, LI Jun. Investigation on the heat transfer characteristics of brush seals[J].Journal of Xi'an Jiaotong University, 2011, 45(9): 94-100. (in Chinese) |
[5] | Chew J W, Lapworth B L, Millener P J. Mathematical modeling of brush seals[J]. International Journal of Heat and Fluid Flow, 1995, 16(6): 493-500. |
[6] | Dogu Y. Investigation of brush seal flow characteristics using bulk porous medium approach[J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 136-144. |
[7] | 李理科, 王之栎, 宋飞, 等. 刷式密封温度场数值研究[J]. 航空动力学报, 2010, 25(5): 1018-1024. LI Like, WANG Zhili, SONG Fei, et al.Numerical investigation of temperature field in brush seals[J]. Journal of Aerospace Power, 2010, 25(5): 1018-1024. (in Chinese) |
[8] | Chew J W, Guardino C. Simulation of flow and heat transfer in the tip region of a brush seal[J]. International Journal of Heat Fluid Flow, 2004, 25: 649-658. |
[9] | Franceschini G, Jones T V, Gillespie D R H. Improved understanding of blow-down in filament seals [C]// GT 2008-51197. ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany, 2008. |
[10] | Bidkar A R, Zheng X, Demiroglu M, et al. Stiffness measurement for pressure-loaded brush seals [C]// GT 2011-45399. ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada, 2011. |
[11] | Pugachev A O, Deckner M. CFD prediction and test results of stiffness and damping coefficients for brush-labyrinth gas seals [C]// GT 2010-22667. ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK, 2010. |
[12] | 陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006. TAO Wenquan. Heat Transfer [M]. Xi'an, China: North Western Polytechnical University Press, 2006. (in Chinese) |