删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

分形颗粒在低Reynolds数条件下传热特性

清华大学 辅仁网/2017-07-07

分形颗粒在低Reynolds数条件下传热特性
虞君武,何榕(),张衍国
Heat transfer characteristics of a fractal particle in a low Reynolds number flow
Junwu YU,Rong HE(),Yanguo ZHANG
Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要目前可用的单个颗粒传热计算公式是在假设颗粒为球形颗粒的基础上得到的,但实际颗粒与球体差异很大,其外形很不规则。但在涉及颗粒流的实际工业计算和相关数值模拟计算中,研究者们通常将实际颗粒近似看成球体,而能否简单采用这一球形假设,还有待进一步验证。该文通过自由漫步的方法生成了与实际颗粒很相似的分形颗粒模型,并运用分子运动论和气体扩散理论建立了分形颗粒在低Reynolds数条件下传热计算模型,研究了分形颗粒的传热特性。计算使用的颗粒直径范围为小于5 μm。计算结果表明: 分形颗粒在低Reynolds数条件下进行传热计算时,采用球形假设会产生很大误差,最大误差可达82%; 分形颗粒的比表面积和分形维数对Nu有重要影响。

关键词 分形颗粒,分子运动论,分子扩散,传热系数
Abstract:Current heat transfer coefficient formulae for particles are derived from data for spheres. However, a real particle is not a sphere, but an irregular body, so the assumption that the real particle approximates a sphere is questionable in mathematical models. Fractal models, which give shapes similar to real particles, are produced by the random walk method to calculate the heat transfer coefficient of a factual particle in a low Reynolds number flow using kinetic theory and gas diffusion theory. The particle diameter is less than 5 μm. Simulations show that the spherical assumption is not suitable for the fractal particle with a maximum error of 82%. Nu is then greatly influenced by the specific area and fractal dimension.

Key wordsfractal particlekinetic theorymolecular diffusionheat transfer coefficient
收稿日期: 2013-10-25 出版日期: 2015-03-17
基金资助:国家自然科学基金项目(21376134)
引用本文:
虞君武,何榕,张衍国. 分形颗粒在低Reynolds数条件下传热特性[J]. 清华大学学报(自然科学版), 2014, 54(6): 781-786.
Junwu YU,Rong HE,Yanguo ZHANG. Heat transfer characteristics of a fractal particle in a low Reynolds number flow. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 781-786.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I6/781


图表:
计盒维数测量原理图[10]
立方网格内分子运动示意图
随机行走方法生成的分形颗粒模型外观图
计算条件 参数
计算网格数 100×100×100
单位网格长度dl/m 1.0×10-7
时间步长dt/s 1.0×10-10
计算压力p/Pa 1.01×105
气体种类 空气
气体导热系数λ/(W·m-2·K-1) 0.024
气体主流温度Tg/K 298
固体颗粒自身发热量Qc/W 2.1×10-16
碰撞系数ε 根据球颗粒计算结果确定


本文的计算条件参数设置
编号 等效直径
d/10-7m
分形维数
df
比表面积
s/m-1
Nu
1 47.129 1.038 2 606 506 1.962
2 46.994 1.035 2 867 080 1.539
3 46.801 1.034 3 294 332 1.375
4 46.559 1.030 3 725 234 1.164
5 46.294 1.041 4 300 757 0.990
6 47.287 1.033 4 698 997 0.921
7 46.876 1.050 5 303 618 0.809
8 46.189 1.056 6 067 137 0.694
9 46.770 1.057 6 796 349 0.614
10 46.863 1.069 7 600 208 0.536
11 47.067 1.070 8 479 320 0.496
12 46.560 1.080 9 501 609 0.434
13 47.265 1.091 10 504 268 0.405
14 47.177 1.080 11 919 894 0.390
15 46.278 1.089 13 195 106 0.363
16 47.102 1.096 15 211 813 0.354
17 46.825 1.105 16 606 890 0.370
18 46.615 1.107 18 738 593 0.410
19 46.191 1.125 20 391 450 0.452
20 46.343 1.141 21 462 920 0.515
21 46.163 1.194 23 637 034 0.734
22 46.156 1.253 24 813 829 1.138


不同分形颗粒的分形参数及计算结果
分形颗粒的比表面积s与分形维数df的关系
分形颗粒传热Nu与分形维数df关系


参考文献:
[1] Kreith F, Bohn M S. Principles of Heat Transfer[M]. 4th Ed. New York: Harper & Row, 1986.
[2] Kramers H. Heat-transfer from spheres to flowing media[J]. Physica, 1946, 12(1): 61-65.
[3] Whitaker S. Forced convection heat-transfer correlations for flow in pipes, past plat plates, single cylinders, single spheres and flow in packed bids and tube bundles[J]. AICHEJ, 1972, 18(3): 361-367.
[4] Ranz W E, Marshall W R. Evaporation from drops, part I and part II [J]. Chemical Engineering Progress, 1952, 48(3): 141-146, 173-180.
[5] Solomon P R, Hamblen D G, Serio M A, et al, A character method and model for predicting coal conversion behavior[J]. Fuel, 1993, 72(4): 469-488.
[6] He R, Sato J, Chen C. Modeling char combustion with fractal pore effects[J]. Combustion Science and Technology, 2002, 174(1): 19-37.
[7] WU Yuxin, ZHANG Jiansheng, Smith P J, et al.Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy & Fuels, 2010, 24(12): 1156-1163.
[8] Hamel S, Krumm W. Mathematical modeling and simulation of bubbling fluidized bed gasifiers[J]. Powder Technology, 2001, 120(1): 105-112.
[9] 李汝辉. 传质学基础 [M]. 北京: 北京航空学院出版社, 1987. LI Ruhui. Fundamentals of Mass Transfer [M]. Beijing: Beihang University Press, 1987. (in Chinese)
[10] 张济忠. 分形[M]. 北京: 清华大学出版社, 1995. ZHANG Jizhong. Fractals [M]. Beijing: Tsinghua University Press, 1995. (in Chinese)
[11] HE Rong, XU Xuchang, CHEN Changhe, et al.Evolution of pore fractal dimensions for burning porous chars[J]. Fuel, 1998, 77(12): 1291-1295.
[12] 曹立勇, 何榕. 基于Sierpinski 地毯的气体扩散规律[J].清华大学学报: 自然科学版, 2009, 49(5): 711-714. CAO Liyong, HE Rong. Gas diffudion in a Sierpinski gasket[J]. J Tsinghua Univ: Sci and Tech, 2009, 49(5): 711-714. (in Chinese)
[13] 曹立勇. 分形孔隙内气体扩散规律及对CaO 孔内反应影响的研究 [D]. 北京: 清华大学, 2009. CAO Liyong. Study of Gas Diffusion in Fractal Media and the Effect on the Reaction in CaO [D]. Beijing: Tsinghua University, 2009. (in Chinese)
[14] 梁占刚. 多孔介质孔隙分形生成[D]. 北京: 清华大学, 2004. LIANG Zhangang. Fractal Generation of Pores for Porous Media [D]. Beijing: Tsinghua University, 2004. (in Chinese)
[15] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows [M]. Oxford: Clarendon Press, 1994.
[16] 韩德刚, 高盘良. 化学动力学基础 [M]. 北京: 北京大学出版社, 1987. HAN Degang, GAO Panliang. Fundamentals of Chemical Kinetics [M]. Beijing: Peking University Press, 1987.(in Chinese)
[17] Jeans J. An Introduction to the Kinetic Theory of Gases [M]. Cambridge: Cambridge University Press, 1952.
[18] 陈群. 煤焦孔隙的分形结构与燃烧特性的研究 [D]. 北京: 清华大学, 2004. CHEN Qun. Study on the Fractal Pore Structure and Combustion Kinetics of Chars [D]. Beijing: Tsinghua University, 2004. (in Chinese)
[19] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 1993. ZHANG Ximin, REN Zepei, MEI Feiming. Convective Heat Transfer [M]. Beijing: China Architecture & Building Press, 1993. (in Chinese)


相关文章:
No related articles found!

相关话题/计算 传热 北京 清华大学 基础