删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

约束状态下混凝土拉伸徐变模型

清华大学 辅仁网/2017-07-07

约束状态下混凝土拉伸徐变模型
魏亚(),姚湘杰
Tensile creep model for concrete subject to constant restraints
Ya WEI(),Xiangjie YAO
Key Laboratory of Civil Engineering Safety and Durability of the Ministry of Education of China, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要为准确计算混凝土收缩变形在受到内、外部约束情况下产生的拉应力,评估混凝土收缩开裂风险、提高结构物耐久性,该文基于浇筑后混凝土的约束应力及应变试验,研究了混凝土约束状态下的拉伸徐变行为。研究结果表明: 约束状态下的混凝土具有较大的流动徐变变形,建立在压缩徐变试验基础上的传统徐变模型不能够精确预测约束状态下混凝土的应力发展。研究根据混凝土实测约束应力应变数据对传统模型进行改进,建立了更能代表实际工程情况、能够用于混凝土约束应力计算的徐变及松弛模型。

关键词 混凝土,收缩变形,约束应力,拉伸徐变,流变
Abstract:Tensile stresses develop in restrained concrete slabs with shrinkage deformation. The appropriate creep or relaxation functions are crucial for assessing the stress development and the associated cracking potential. Existing creep models were found not suitable for such stress evaluations. This study investigates restrained slabs stress-strain characteristics and tensile creep behavior in axially restrained concrete specimens which represent field conditions of actual structures. A modified tensile creep compliance function is used to account for the high viscous effect with restrained conditions for accurate predictions of the stress and cracking potential in structures.

Key wordsconcreteshrinkage deformationrestrained stresstensile creepflow strain
收稿日期: 2012-07-02 出版日期: 2015-09-03
ZTFLH: 
基金资助:国家自然科学基金资助项目 (51108246)
引用本文:
魏亚, 姚湘杰. 约束状态下混凝土拉伸徐变模型[J]. 清华大学学报(自然科学版), 2014, 54(5): 563-567.
Ya WEI, Xiangjie YAO. Tensile creep model for concrete subject to constant restraints. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 563-567.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/563


图表:
系列 混凝土组分/(kg分比-3) 养护、测试
温度/℃
水泥 矿渣
O23 451 203 1 143 402 0 23
O33 451 203 1 143 402 0 33
G23 316 203 1 143 402 135 23
G33 316 203 1 143 402 135 33


混凝土配合比
混凝土约束应力试验示意图
混凝土温度、应变、应力发展曲线示例
实测混凝土的应力-应变-强度发展曲线
基于实测应力采用不同徐变模型预测的收缩变形


参考文献:
[1] Kovler K, Sikuler J, Bentur A. Restrained shrinkage tests of fiber reinforced concrete ring specimens: Effect of core thermal expansion[J]. Materials and Structures, 1993, 26(4): 231-237.
[2] Bentz D, Jensen O, Hansen K, et al.Influence of cement particle size distribution on early age autogenous strains and stresses in cement-based materials[J]. Journal of the American Ceramic Society, 2001, 84(1): 129-135.
[3] 杨杨, 许四法, 叶德艳, 等. 早龄期高强混凝土拉伸徐变特性[J]. 硅酸盐学报, 2009, 37(7): 1124-1129. YANG Yang, XU Sifa, YE Deyan, et al.Early age high strength concrete tensile creep properties[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1124-1129.
[4] 惠荣炎, 黄国兴, 混凝土的徐变 [M]. 北京: 中国铁道出版社, 1988. HUI Rongyan, HUANG Guoxing. Creep of Concrete [M]. Beijing: China Railway Publishing House, 1988.
[5] Neville A, Dilger A, Brooks J. Creep of Plain and Structural Concrete [M]. New York, USA: Construction Press, 1983.
[6] ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effect in Concrete Structures, ACI 209R-92 [R]. Farmington Hills, USA: American Concrete Institute, 1992.
[7] CEB Bulletin No.213/214. CEB-FIP Model Code 1990[S]. London, UK: British Standard Institution, 1993.
[8] Bažant Z, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3[J]. Materials and Structures, 1995, 28(6): 38-39.
[9] Bažant Z. Prediction of concrete creep and shrinkage: Past, present and future[J]. Nuclear Engineering and Design, 2001, 203(1): 27-38.
[10] 丁文盛, 吕志涛, 孟少平. 混凝土收缩徐变预测模型的分析比较[J]. 桥梁建设, 2004, 6: 13-16. DING Wensheng, LV Zhitao, MENGShaoping. Analysis of models for concrete shrinkage and creep[J]. Bridge Construction, 2004, 6: 13-16.
[11] Springenschmid R, Breitenbucher R, Mangold M. Development of the cracking frame and the temperature-stress testing machine [C]// Springenschmid, ed. Proceedings of Thermal Cracking in Concrete at Early Ages. London, UK: E&FN SPON, 1994: 137-144.
[12] Bentur A, Kovler K. Evaluation of early age cracking characteristics in cementitious systems[J]. Materials and Structures, 2003, 36(3): 183-190.
[13] Shah S, Ouyang C, Marikunte S, et al.A method to predict shrinkage cracking of concrete[J]. ACI Material Journal, 1998, 95(4): 339-346.
[14] Igarashi1 S, Bentur A, Kovler K. Autogenous shrinkage and induced restraining stresses in high-strength concretes[J]. Cement and Concrete Research, 2000, 30(11): 1701-1707.
[15] Kristiawan S. Tensile stress-strain behaviour of concrete under various rates of loading and the role of creep on the behaviour[J]. Teknik Sipil, 2005, 6(1): 73-81
[16] Reiner M. On volume or isotropic flow as exemplified in the creep of concrete[J]. Applied. Science Research, 1949, 1(1): 475-488.
[17] Østergaard L, Lange D, Altoubat S, et al.Tensile basic creep of early-age concrete under constant load[J]. Cement Concrete Research, 2001, 31(12): 1895-1899.
[18] Bažant Z, Hauggard A, Baweja S, et al.Microprestress solidification theory for concrete creep. I: Aging and drying effects[J]. Journal of Engineering Mechanics-ASCE, 1997, 123(11): 1188-1194.


相关文章:
[1]林鹏,胡杭,郑东,李庆斌. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[2]钱稼茹,张扬,张微敬. 双钢管高强混凝土短柱偏心受压性能试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 1-7.

相关话题/混凝土 计算 铁道 工程 测试