删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

控制棒水压驱动系统水压缸升压过程机理

清华大学 辅仁网/2017-07-07

控制棒水压驱动系统水压缸升压过程机理
刘潜峰, 薄涵亮, 秦本科
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Boost pressure mechanism in hydraulic cylinders for control rod hydraulic drive systems
LIU Qianfeng, BO Hanliang, QIN Benke
Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要就控制棒水压驱动系统(CRHDS)运行过程中所出现的工况, 利用流体力学理论方式研究分析了水压缸步进过程。首先建立了水压缸升压理论模型,对水压缸升压过程进行了分析; 其次, 根据实验运行工况, 计算得出了水压缸运行性能, 并利用实验数据验证了计算结果。计算结果表明: 在升压过程中, 当内套停止运动后, 缸内压力出现拐点; 内套位移增加, 速度逐步减小; 由于缸内压力增加, 缸内和缸外的压差增大, 密封环泄漏流速增大。缸内压力模型能够提供各个所需的物理量, 为水压缸和驱动机构运动机理分析提供了理论基础。
关键词 控制棒水压驱动系统(CRHDS),水压缸,升压模型
Abstract:The stepping of a hydraulic cylinder was analyzed based on the fluid mechanics for a control rod hydraulic drive system (CRHDS). The pressure transient was analyzed experimentally and theoretically for abnormal operating conditions. The results show that as the cylinder pressure increases, the pressure has an inflexion point when the inner cylinder reaches the top. The inner cylinder displacement increases while the speed of the inner cylinder decrease as the pressure increases. The flow velocity at the sealing ring increases due to the higher pressure between the two surfaces of the inner cylinder. This mechanism can be used to analyze the cylinder performance.
Key wordscontrol rod hydraulic drive system (CRHDS)hydraulic cylindersmodel for boost pressure
收稿日期: 2014-04-13 出版日期: 2016-01-12
ZTFLH:TL351+.5
引用本文:
刘潜峰, 薄涵亮, 秦本科. 控制棒水压驱动系统水压缸升压过程机理[J]. 清华大学学报(自然科学版), 2015, 55(12): 1324-1331.
LIU Qianfeng, BO Hanliang, QIN Benke. Boost pressure mechanism in hydraulic cylinders for control rod hydraulic drive systems. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1324-1331.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.24.009 http://jst.tsinghuajournals.com/CN/Y2015/V55/I12/1324


图表:
图1 提升缸装配图
图2 密封环
图3 水压缸充压物理模型
图4 泵性能曲线
表1 充压计算模型
图5 模型求解过程
图6 当外界载荷30kg时提升缸物理量实验数值与计算数值比较
表2 内套运动物理量
图7 模型各个物理量变化情况


参考文献:
[1] 薄涵亮, 郑文翔, 王大中, 等.核反应堆控制棒水压驱动技术 [J]. 清华大学学报: 自然科学版, 2005, 45(3): 424-427.BO Hanliang, ZHENG Wenxiang, WANG Dazhong, et al. Hydraulic control rod drive technology for nuclear reactors [J]. Journal of Tsinghua University: Science& Technology, 2005, 45(3): 424-427(in Chinese).
[2] 秦本科, 薄涵亮, 郑文祥, 等. 控控制棒水压驱动机构单缸步进动态过程 [J]. 清华大学学报: 自然科学版, 2005, 45(3): 428-431. QIN Benke, BO Hanliang, ZHENG Wenxiang, et al.Single cylinder stepping motion for the control rod hydraulic drive mechanism [J]. Journal of Tsinghua University: Science & Technology, 2005, 45(3): 428-431(in Chinese).
[3] 秦本科, 薄涵亮, 郑文祥, 等. 控制棒水压驱动机构水压缸步升压力变化过程 [J]. 清华大学学报: 自然科学版, 2008, 48(12): 2118-2121.QIN Benke, BO Hanliang, ZHENG Wenxiang, et al. Pressure transients in hydraulic cylinder step-up mot ion of control rod hydraulic drive mechanism [J]. Journal of Tsinghua University : Science & Technology, 2008, 48(12): 2118-2121 (in Chinese).
[4] 秦本科, 薄涵亮, 郑文祥. 控制棒水压驱动机构水压缸步降过程研究 [J]. 原子能科学技术, 2009, 43(4): 345-349.QIN Benke, BO Hanliang, ZHENG Wenxiang. Study on step-down dynamic process of hydraulic cylinder for control rod hydraulic drive mechanism [J]. Atomic Energy Science and Technology, 2009, 43(4): 345-349. (in Chinese)
[5] 秦本科, 薄涵亮, 郑文祥. 控制棒水压驱动机构水压缸步降过程运动阻力研究 [J]. 原子能科学技术, 2009, 43(4): 435-440. QIN Benke, BO Hanliang, ZHENG Wenxiang. Kinetic resistance of hydraulic cylinder for control rod hydraulic drive mechanism in step-down motion process [J]. Atomic Energy Science and Technology, 2009, 43(4) : 345-349. (in Chinese)
[6] 秦本科, 薄涵亮, 郑文祥. 水压缸活塞环密封流动阻力研究 [J]. 原子能科学技术, 2005, 39(3): 236-239.QIN Benke, BO Hanliang, ZHENG Wenxiang. Flow Resistance of hydraulic cylinder piston ring seal structure [J].Atomic Energy Science and Technology, 2005, 39(3): 236-239. (inChinese)
[7] 秦本科, 薄涵亮, 郑文祥. 水压缸活塞环密封运动阻力研究 [J]. 原子能科学技术, 2006, 40(2): 235-239.QIN Benke, BO Hanliang, ZHENG Wenxiang. Kinetic resistance of hydraulic cylinder piston ring seal structure [J]. Atomic Energy Science and Technology, 2006, 40(2): 235-239. (in Chinese)
[8] 秦本科. 核反应堆控制棒水压驱动技术研究[D]. 北京: 清华大学, 2005.QIN Benke. Research on the Control rod Hydraulic Drive Technology [D]. Beijing: Tsinghua University, 2005. (in Chinese)
[9] 华绍曾, 杨学宁. 实用流体阻力手册 [M]. 北京: 国防工业出版社, 1985: 422.HUA Shaozeng, YANG Xuening. Applied Fluid Resistance Handbook [M]. Beijing: Defense Industry Press,1985: 422.(in Chinese)
[10] 归柯庭, 汪军, 王秋颖. 工程流体力学 [M]. 北京: 科学技术出版社, 2003: 15.GUI Keting, WANG Jun, WANG Qiuying. Engineering Fluid Mechanics [M]. Beijing: Science and Technology Press, 2003: 15. (in Chinese)
[11] 秋元德三. 水击与压力脉动 [M]. 北京: 电力工业出版社, 1981: 35.Akimoto Narumi. Water Hammer and Pressure Fluctuation [M]. Beijing: Electric Power Industry Press, 1981: 35. (in Chinese)
[12] Reynolds W. Thermodynamic Properties IN S.I.[M]. Stanford, USA: Stanford University Press, 1983.
[13] 薄涵亮. 卡林那循环的热力学分析 [D]. 西安: 西安交通大学, 1988.BO Hanliang. Thermodynamic Analysis of Kalina Cycle [D]. Xi'an: Xi'an Jiaotong University, 1988.(in Chinese)


相关文章:
No related articles found!

相关话题/本科 过程 运动 北京 系统