移动通信系统平均物理层安全容量 |
李涛1, 张焱2, 许希斌3, 周世东1,3 |
1. 清华大学电子工程系, 微波与数字通信国家重点实验室, 北京 100084; 2. 北京理工大学信息与电子学院, 北京 100081; 3. 清华大学信息科学与技术国家实验室, 北京 100084 |
Mean physical-layer secrecy capacity in mobile communication systems |
LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3 |
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; 2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; 3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要为提升移动通信系统的安全性,研究了用户移动时的平均物理层安全容量。在实际传播环境中,用户移动会导致物理层安全容量在大范围内变化,因此提出合法用户平均物理层安全容量以刻画系统的安全通信性能。通过分析窃听者位置对平均物理层安全容量的影响,得到了平均物理层安全容量的分布特征。根据分布特征,提出了一种改善平均物理层安全容量的方案。该方案通过限制窃听者存在区域,保证用户平均物理层安全容量不低于指定值。理论和数值分析结果表明:所提方案可以有效地保障移动通信系统的平均物理层安全容量。 | |||
关键词 :移动通信,物理层安全,平均物理层安全容量 | |||
Abstract:The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems. | |||
Key words:mobile communicationphysical-layer securitymean physical-layer secrecy capacity | |||
收稿日期: 2015-03-06 出版日期: 2015-12-01 | |||
| |||
通讯作者:周世东,教授,E-mail:zhousd@tsinghua.edu.cnE-mail: zhousd@tsinghua.edu.cn |
引用本文: |
李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1241-1245,1252. LI Tao, ZHANG Yan, XU Xibin, ZHOU Shidong. Mean physical-layer secrecy capacity in mobile communication systems. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1241-1245,1252. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.21.013或 http://jst.tsinghuajournals.com/CN/Y2015/V55/I11/1241 |
图表:
图1 单蜂窝小区示意图 |
图2 上行信道中用户安全容量的中断概率 |
图3 用户在某个扇区等概分布,下行信道的平均物理层安全容量随窃听者位置的变化 |
图4 用户在某个扇区等概分布,上行信道的平均物理层安全容量随窃听者位置的变化 |
参考文献:
[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549. [2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33. [3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715. [4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387. [5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456. [6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348. [7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300. [8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848. [9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249. [10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693. [11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906. [12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888. [13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325. [14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507. [15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682. [16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114. [17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002. [18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755. [19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019. [20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982. [21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6. [22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631. |
相关文章:
|