删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

延长PET轴向视野的马赛克物理设计方案

清华大学 辅仁网/2017-07-07

延长PET轴向视野的马赛克物理设计方案
程李1, 魏清阳2, 夏彦3, 尚鸿4, 刘亚强1, 吴朝霞1, 马天予1
1. 清华大学 工程物理系, 北京 100084, 中国;
2. 清华大学 电机工程与应用电子技术系, 北京 100084, 中国;
3. 北京卫星环境工程研究所 可靠性与环境工程技术重点实验室, 北京 100000, 中国;
4. 加州大学伯克利分校 生物工程系, 伯克利 94158, 美国
Mosaic designs for extending PET axial fields of view
CHENG Li1, WEI Qingyang2, XIA Yan3, SHANG Hong4, LIU Yaqiang1, WU Chaoxia1, MA Tianyu1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
3. Key Laboratory of Reliability and Environmental Engineering Technology, Beijing Satellite Environment Engineering Research Institute, Beijing 100000, China;
4. Department of Bioengineering, University of California at Berkeley, Berkeley 94158, USA

摘要:

输出: BibTeX | EndNote (RIS)
摘要该文提出一种马赛克式正电子发射断层成像(PET)探测器设计方案, 通过改变晶体的排布方式, 并基于GATE (Geant4 Application for Emission Tomography)软件模拟, 对3种马赛克PET的设计方案和传统的PET设计方案进行了多方面的对比, 对比的内容包括: 轴向探测效率、体源探测效率以及空间分辨率。并且进一步考虑能量下阈的影响, 比较能量下阈为0 keV、 250 keV和350 keV时各个方案测得的结果的变化。结果表明: 马赛克PET方案在不考虑能量下域时, 轴向探测效率提高24%~50%, 而体源探测效率更是可以提高47%~62%。当能量下阈为 250 keV 时, 方案4的轴向探测效率和体源探测效率可分别提升12%和8%, 于此同时其重建图像空间分辨率较传统方案相比接近。
关键词 正电子发射断层成像(PET),马赛克排布方案,空间分辨率,能量下阈
Abstract:There positron emission tomography (PET) mosaic designs were developed from a traditional PET design based on GATE (Geant4 Application for Emission Tomography) simulations using axial sensitivity, volume sensitivity and spatial resolutions with various energy thresholds of 0 keV, 250 keV and 350 keV. The results indicate that without the effect of the energy threshold, the axial sensitivity of the mosaic designs is increased 24%-50%, while the volume sensitivity is increased 47%-62%. With an appropriate energy threshold (250 keV), the axial sensitivity is increased by 12% while the volume sensitivity is increased by 8% to give similar image quality as the traditional design.
Key wordspositron emission tomography (PET)mosaic designsspatial resolutionenergy threshold
收稿日期: 2015-06-24 出版日期: 2016-01-12
ZTFLH:R445.6
通讯作者:马天予,副研究员,E-mail:maty@mail.tsinghua.edu.cnE-mail: maty@mail.tsinghua.edu.cn
引用本文:
程李, 魏清阳, 夏彦, 尚鸿, 刘亚强, 吴朝霞, 马天予. 延长PET轴向视野的马赛克物理设计方案[J]. 清华大学学报(自然科学版), 2015, 55(12): 1335-1341.
CHENG Li, WEI Qingyang, XIA Yan, SHANG Hong, LIU Yaqiang, WU Chaoxia, MA Tianyu. Mosaic designs for extending PET axial fields of view. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1335-1341.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.24.011 http://jst.tsinghuajournals.com/CN/Y2015/V55/I12/1335


图表:
图1 PET探测器的层次化示意图
表1 PET探测器部分设计参数设置
图2 各个方案的4种晶体排布方式
表2 各个方案部分参数比较
表3 PET探测器的电子学参数
图3 热源空间分布图
表4 中心探测效率的模拟结果和计算结果
表5 轴向探测效率模拟结果
图4 探测效率与轴向位置关系图
表6 体源测量模拟结果
表7 点源探测结果
图5 方案1得到的正弦图
图6 方案1重建后的图像
表8 点源重建的半高宽
图7 r=0.1cm 处点源经方案2重建图像
图8 热源重建图像


参考文献:
[1] MacDonald L R, Harrison R L, Alessio A M, et al. Effective count rates for PET scanners with reduced and extended axial field of view [J]. Physics in Medicine and Biology, 2011, 56(12): 3629-3643.
[2] Poon J K, MacDonald L R, Cherry S R, et al. A simulation study of a long axial field of view whole-body PET scanner using cylindrical and anthropomorphic phantoms [C]// Nuclear Science Symposium Conference Record. Dresden, Germany: IEEE, 2008: 4999-5006.
[3] Poon J K, Dahlbom M L, Moses W W, et al. Corrigendum: Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: A simulation study [J]. Physics in Medicine and Biology, 2012, 57(23): 4077-4094.
[4] Surti S, Lee E, Werner M, et al. Imaging study of a clinical PET scanner design using an optimal crystal thickness and scanner axial FOV [C]// Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Valencia, Spain: IEEE, 2011: 3390-3394.
[5] Surti S, Werner M E, Karp J S. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness [J]. Physics in Medicine and Biology, 2013, 58(12): 3995-4012.
[6] Yamaya T, Inaniwa T, Minohara S, et al. A proposal of an open PET geometry [J]. Physics in Medicine and Biology, 2008, 53(3): 757-773.
[7] Yamaya T, Yoshida E, Inaniwa T, et al. Development of a small prototype for a proof-of-concept of OpenPET imaging [J]. Physics in Medicine and Biology, 2011, 56(4): 1123-1137.
[8] Tashima H, Yamaya T, Yoshida E, et al. A single-ring OpenPET enabling PET imaging during radiotherapy [J]. Physics in Medicine and Biology, 2012, 57, 4705-4718.
[9] Yoshida E, Kinouchi S, Tashima H, et al. Developmentand performance evaluation of a single-ring OpenPET prototype [C]// Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Anaheim, USA: IEEE, 2012: 3125-3127.
[10] Jan S, Santin G, Strul D, et al. GATE: A simulation toolkit for PET and SPECT [J]. Physics in Medicine and Biology, 2004, 49(19): 4543-4561.
[11] Daubewitherspoon M E, Muehllehner G. Treatment of axial data in 3-dimensional PET [J]. Journal of Nuclear Medicine, 1987, 28(11): 1717-1724
[12] Defrise M, Kinahan P E, Townsend D W, et al. Exact and approximate rebinning algorithm for 3-D PET data [J]. IEEE Transaction on Medical Imaging, 1997, 16(2): 145-158.


相关文章:
No related articles found!

相关话题/方案 空间 北京 图像 清华大学