删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向极化SAR图像配准的极化特征

清华大学 辅仁网/2017-07-07

面向极化SAR图像配准的极化特征
马文婷,杨健(),高伟,周广益
Polarimetric feature for registration of polarimetric SAR images
Wenting MA,Jian YANG(),Wei GAO,Guangyi ZHOU
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要不同波段的极化合成孔径雷达(SAR)图像间的配准,是多波段极化SAR数据融合中的一个重要问题。该文从地物的极化散射机理出发,提出了一种适用于尺度不变特征变换(SIFT)配准算法的极化特征。该特征包含了地物目标主要散射成分的信息,并反映了其他弱散射成分的强度分布,可在不同波段极化SAR图像中保持稳定。实验结果表明: 与使用散射总功率(Span)实现多波段极化SAR图像配准的方法相比,该特征在不同波段下的差异较小; 使用SIFT算法配准后,该特征图像可得到更多的关键点和正确配准点,且配准点的分布较分散,从而有效地提高了多波段极化SAR图像的配准性能。

关键词 合成孔径雷达,极化散射特征,尺度不变特征变换,图像配准
Abstract:The registration of multi-band polarimetric synthetic aperture radar (SAR) images is a key problem for image fusion. This paper presents a feature based on the polarimetric scattering mechanism for registration using the scale invariant feature transform (SIFT) algorithm. The feature represents information for the main scattering component and the influence of the other scattering components distribution and has good consistency for multi-band polarimetric SAR images. Tests demonstrate that the feature difference between multi-band polarimetric SAR images is less than the total scattered power (Span) difference. The SIFT algorithm is then used to get more key points, more correct registration points, and better spatial distribution of the correct registration points. The registration efficiency is remarkably increased by this feature.

Key wordssynthetic aperture radar (SAR)polarimetric scattering featurescale invariant feature transform (SIFT)image registration
收稿日期: 2013-05-31 出版日期: 2015-04-16
ZTFLH: 
基金资助:国家自然科学基金项目 (41171317)
引用本文:
马文婷, 杨健, 高伟, 周广益. 面向极化SAR图像配准的极化特征[J]. 清华大学学报(自然科学版), 2014, 54(2): 270-274.
Wenting MA, Jian YANG, Wei GAO, Guangyi ZHOU. Polarimetric feature for registration of polarimetric SAR images. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 270-274.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/270


图表:
不同波段的Span图像及MSF图像
极化SAR数据的Span之差与MSF之差对比
多组极化SAR数据的Span图像和MSF图像使用SIFT算法提取的关键点数对比
两组数据的Span图像和MSF图像配准结果对比
组别 Span图像 MSF图像
总配准点 配准错误点 总配准点 配准错误点
第1组 10 0 15 0
第2组 4 1 7 0


两组数据的Span图像和MSF图像配准点数对比
23组极化SAR数据使用SIFT算法配准的结果对比图


参考文献:
[1] LI Qiaoliang, WANG Guoyou, LIU Jianguo, et al.Robust scale-invariant feature matching for remote sensing image registration[J]. IEEE Gieoscience and Remote Snsing Letter, 2009, 6(2): 287-291.
[2] Lowe D G. Object recognition from local scale-invariant features [C]// Proceedings of 7th International Conference on Computer Vision. Kerkyra, Greece, 1999: 1150-1157.
[3] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Internation Journal of Computer Vision, 2004, 60(2): 91-110.
[4] Goncalves H, Corte-Real L, Gon-alves J A. Automatic image registration through image segmentation and SIFT[J]. IEEE Transaction on Gieoscience and Remote Sensing, 2011, 49(7): 2589-2600.
[5] Schwind P, Suri S, Reinartz P, et al.Applicability of the SIFT operator to geometric SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(8): 1959-1980.
[6] Chureesampant K, Susaki J. Automatic GCP extraction of fully polarimetric SAR images[J]. IEEE Transaction on Gieoscience and Remote Sensing, 2014: 52(1): 137-148.
[7] ZHOU Guangyi, CUI Yi, CHEN Yilun, et al.A new edge detection method of polarimetric SAR image using curvelet transform and the Duda operator[J]. Electronic Letter, 2010, 46(2): 167-169.
[8] Borghys D, Perneeland C, Acheroy M. A hierarchical approach for registration of high-resolution polarimetric SAR images [C]// Proceedings of SPIE Image and Signal Processing for Remote Sensing VII. Toulouse, France, 2002: 11-22.
[9] Suri S, Schwind P, Uhl J, et al.Modifications in the SIFT operator for effective SAR image matching[J].International Journal of Remote Sensing, 2010, 1(3): 243-256.
[10] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimery[J]. IEEE Transaction on Gieoscience and Remote Sensing, 1996, 34(2): 498-518.
[11] Witkin A P. Scale-space filtering [C]//Proceedings of International Joint Conference on Artificial Intelligence. Karlsruhe, Germany, 1983: 1019-1022.
[12] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transaction on Gieoscience and Remote Sensing, 1997, 35(1): 68-78.


相关文章:
[1]李增辉, 常雯, 杨健. 基于外推陷波滤波的孤立强散射旁瓣抑制[J]. 清华大学学报(自然科学版), 2015, 55(5): 503-507.
[2]邓可欣. 基于超边图匹配的视网膜眼底图像配准算法[J]. 清华大学学报(自然科学版), 2014, 54(5): 568-574.
[3]常雯,李增辉,杨健. 基于迭代Radon-Wigner变换的FMCW-ISAR目标速度估计及速度补偿[J]. 清华大学学报(自然科学版), 2014, 54(4): 464-468.
[4]游彪,杨健,叶春茂,宋建设. 改进的功率极化交叉熵舰船检测方法[J]. 清华大学学报(自然科学版), 2014, 54(4): 453-457.
[5]马文婷,杨健,崔一,高伟. 地面高度起伏对SAR图像匹配性能影响的定量分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 432-436.

相关话题/图像 数据 信息 实验 特征