|
摘要构造业务模型以支持应用系统开发是基于模型驱动架构实现云服务系统快速开发及有效运维的重要途径。然而,云平台下的海量异构模型的统一管理并不容易。该文提出一个分布式环境下的业务模型数据存储访问框架,以支持业务建模、服务转换、服务配置、服务部署、服务监控等服务生命周期。将关系数据库及NoSQL数据库结合以存储和管理结构化数据;采用基于Hadoop构建的文件库以实现非结构化的业务模型管理,从而构造一个综合的数据管理模型,实现了业务模型统一存储和管理;并根据业务模型中的资源描述,生成相应RESTful服务供应用系统调用;构建一个基于云平台的业务模型库软件平台以开展应用验证。结果表明:该框架不仅对云服务应用系统提供了高效的数据存储访问方式,也降低了应用服务的开发及维护成本,具有较高工程价值。 |
关键词 :云服务系统,业务模型,海量数据存储,模型驱动架构,RESTful服务 |
Abstract:Business models can be used in model driven service development to rapidly construct and execute service applications in cloud platforms. However, a united model management is different to construct due to the massive amount of heterogeneous data. Therefore, a distributed model storage and accessing framework was developed to support the different stages of the full lifecycle of services, such as business modeling, service transformation, service configuration, service deployment and service monitoring. First, relational databases and a NoSQL database were integrated to efficiently store and access structured data.Then, a file repository based on Hadoop was built to manage unstructured model files in a comprehensive database management model for unified management of business models. RESTful services were generated for applications based on resource descriptions in the business models. Finally, a cloud-based business model library was built for verification. Tests show that the framework provides an effective data storage and access model for service applications and reduces development and maintenance costs. The tests also validate the framework's capabilities. |
Key words:cloud-based service systembusiness modelmassive data storingmodel-driven architectureRESTful service |
收稿日期: 2016-10-28 出版日期: 2017-06-22 |
|
[1] | Jatana N, Puri S, Ahuja M, et al. A survey and comparison of relational and non-relational database[J]. International Journal of Engineering, 2012, 1(6):1-5. |
[2] | Curé O, Hecht R, Le Duc C, et al. Data integration over NoSQL stores using access path based mappings[C]//Proc 22nd Springer Conf Database and Expert Systems Applications. Berlin, Germany:Springer Press, 2011:481-495. |
[3] | Atzeni P, Bugiotti F, Rossi L. SOS (Save Our Systems):A uniform programming interface for non-relational systems[C]//Proc 15th ACM Conf Extending Database Technology. Berlin, Germany:ACM Press, 2012:582-585. |
[4] | 吴广君, 王树鹏, 陈明, 等. 海量结构化数据存储检索系统[J]. 计算机研究与发展, 2012, 49(S1):1-5.WU Guangjun, WANG Shupeng, CHEN Ming, et al. Massive structured data oriented storage and retrieve system[J]. Journal of Computer Research and Development, 2012, 49(S1):1-5. (in Chinese) |
[5] | Borthakur D. The hadoop distributed file system:Architecture and design[J]. Hadoop Project Website, 2007, 11(11):1-10. |
[6] | Li F, Ooi B C, Özsu M T, et al. Distributed data management using MapReduce[J]. ACM Computing Surveys, 2013, 46(3):31-73. |
[7] | Theeten B, Janssens N. Chive:Bandwidth optimized continuous querying in distributed clouds[J]. IEEE Transactions on Cloud Computing, 2015, 3(2):219-232. |
[8] | Xu Y, Kostamaa P, Gao L. Integrating hadoop and parallel DBMs[C]//Proc the 2010 ACM SIGMOD Conf. Management of Data. Indianapolis, IN, USA:ACM Press, 2010:969-974. |
[9] | JIANG Lihong, XU Lida, CAI Hongming, et al. An IoT-oriented data storage framework in cloud computing platform[J]. IEEE Transaction on Industrial Informatics, 2014, 10(2):1443-1451. |
[10] | García-galán J, Pasquale L, Trinidad P, et al. User-centric adaptation analysis of multi-tenant services[J]. ACM Transactions on Autonomous and Adaptive Systems, 2016, 10(4):24-50. |
[11] | Lemos A L, Daniel F, Benatalla B. Web service composition:A survey of techniques and tools[J]. ACM Computing Surveys, 2015, 48(3):33-41. |
[12] | Yan Z, Dijkman R, Grefen P. Business process model repositories-framework and survey[J]. Information and Software Technology, 2012, 54(4):380-395. |