删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

组合循环推进系统燃料消耗模型及优化分析

清华大学 辅仁网/2017-07-07

组合循环推进系统燃料消耗模型及优化分析
计自飞, 王兵, 张会强
清华大学 航天航空学院, 北京 100084
Optimal analysis of the fuel consumption of combined cycle propulsion systems
JI Zifei, WANG Bing, ZHANG Huiqiang
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要根据飞行任务要求,准确计算出飞行器所需的燃料消耗是推进系统设计的前提。该文针对火箭基组合循环动力(RBCC)推进方式,并以“地面起飞—巡航—滑翔着陆”的高超音速飞行器为研究对象,采用理论分析的方法建立了燃料消耗的计算模型,并提出一种以最小燃料消耗为目标的多参数优化方法。周期跳跃式巡航飞行器燃料消耗的研究结果表明:随着巡航初速度、爬升段航迹倾角、巡航轨迹角的增加,燃料消耗量增加;随着飞行动压的增加,燃料消耗量先减小后阶跃式增加。优化分析结果表明:对于起飞质量100 t、2 h全球到达的RBCC组合动力高超音速飞行器,在升阻比为4时巡航跳跃周期数为46,最小燃料消耗量约为32 t。研究结果表明该燃料消耗分析方法合理、可行,为高超音速飞行器及组合循环动力推进系统的工程设计提供了依据。
关键词 组合循环推进,高超音速飞行,燃料消耗,优化方法
Abstract:The propulsion system fuel consumption must be accurately predicted for aircraft missions. A theoretical analysis of a hypersonic aircraft with a “boost-cruise-glide” flight mission profile powered by a rocket based combined cycle (RBCC) engine is used to predict the fuel consumption of the aircraft and to optimize the fuel consumption. The fuel consumption analysis of periodic hypersonic cruise trajectories shows that the fuel consumption decreases with increasing initial cruise velocity, larger flight-path angles and larger flight-path angles for cruising. As the flight dynamic pressure increases, the fuel consumption first decreases but then increases with a step change. The optimization results show that the hypersonic cruise stage should have 46 skip-periods with a minimum fuel consumption of about 32 tons for a two-hour global-reaching hypersonic aircraft with an initial weight of 100 tons and a lift-drag ratio of 4. The optimal results show that the fuel consumption prediction model is reasonable. The present study can guide the design of combined cycle propulsion systems.
Key wordscombined cycle propulsionhypersonic flightfuel consumptionoptimization method
收稿日期: 2015-12-11 出版日期: 2017-05-20
ZTFLH:V43
通讯作者:王兵,副教授,E-mail:wbing@tsinghua.edu.cnE-mail: wbing@tsinghua.edu.cn
引用本文:
计自飞, 王兵, 张会强. 组合循环推进系统燃料消耗模型及优化分析[J]. 清华大学学报(自然科学版), 2017, 57(5): 516-520.
JI Zifei, WANG Bing, ZHANG Huiqiang. Optimal analysis of the fuel consumption of combined cycle propulsion systems. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 516-520.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.030 http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/516


图表:
图1 火箭置于中心锥体的一种RBCC结构示意图
图2 RBCC发动机比推力以及比冲随飞行Ma 数的变化
图3 优化方法流程图
表1 优化设计参数的限制条件
图4 燃料消耗、巡航周期数和总时间随巡航初速度的变化
图5 燃料消耗、巡航周期数和总时间随巡航轨迹角的变化
表2 以最省燃料为目标优化飞行参数
图6 RBCC动力飞行器飞行过程优化结果示意图
图7 3种推进方式的最小燃料消耗量对比


参考文献:
[1] 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1): 1-8.ZHANG Mengzheng, LI Ping, CHEN Zukui. Challenge and perspective of combined cycle propulsion system [J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8. (in Chinese)
[2] 彭小波. 组合循环动力技术在天地往返领域的发展与应用[J]. 导弹与航天运载技术, 2013(1): 78-82.PENG Xiaobo. Development of combined cycle propulsion technology in reusable launch vehicle [J]. Missiles and Space Vehicles, 2013(1): 78-82. (in Chinese)
[3] 张蒙正, 张玫, 严俊峰, 等. RBCC动力系统工作模态问题[J]. 火箭推进, 2015, 41(2): 1-6.ZHANG Mengzheng, ZHANG Mei, YAN Junfeng, et al. Discussion about work modal of RBCC power system [J]. Journal of Rocket Propulsion, 2015, 41(2): 1-6. (in Chinese)
[4] 潘浩, 潘宏亮, 秦飞, 等. 基于三维CFD的RBCC发动机建模方法[J]. 固体火箭技术, 2015, 38(3): 336-341.PAN Hao, PAN Hongliang, QIN Fei, et al. Modeling method of RBCC engine based on three-dimensional CFD [J]. Journal of Solid Rocket Technology, 2015, 38(3): 336-341. (in Chinese)
[5] 张时空, 李江, 秦飞, 等. 两级入轨运载器RBCC动力系统内流道设计与性能计算[J]. 推进技术, 2015, 36(4): 520-526.ZHANG Shikong, LI Jiang, QIN Fei, et al. Design and computational investigation of a RBCC propulsion system flowpath for a TSTO concept vehicle [J]. Journal of Propulsion Technology, 2015, 36(4): 520-526. (in Chinese)
[6] Etele J, Hasegawa S, Ueda S. Experimental investigation of an alternative rocket configuration for rocket-based combined cycle engines [J]. Journal of Propulsion and Power, 2014, 30(4): 944-951.
[7] Chuang C H, Morimoto H. Sub-optimal and periodic solutions for hypersonic [C]//Proc American Control Conference. Piscataway, NJ: IEEE, 1995: 1186-1190.
[8] 张忠峰, 高云峰, 宝音贺西. 高超声速飞行器巡航燃料消耗分析[J]. 弹箭与制导学报, 2009, 29(1): 184-187.ZHANG Zhongfeng, GAO Yunfeng, BAOYIN Hexi. Analysis of fuel-consumption of hypersonic vehicle during cruise [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 184-187. (in Chinese)
[9] 龚纯, 王正林. 精通MATLAB最优化计算[M]. 北京: 电子工业出版社, 2009.GONG Chun, WANG Zhenglin. Proficient in MATLAB Optimization Calculation [M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese)
[10] Segal C. Propulsion System for Hypersonic Flight [R]. Gainesville, FL: University of Florida, 2004.
[11] Murthy S N B, Curran E T. Developments in High-Speed Vehicle Propulsion Systems [M]. Progress in Astronautics and Aeronautics. Washington, DC: AIAA, 1996.
[12] Heiser W H, Pratt D T. Hypersonic Airbreathing Propulsion [M]. Washington DC: AIAA, 1994.
[13] Segal C. The Scramjet Engine: Processes and Characteristics [M]. New York, NY: Cambridge University Press, 2009.
[14] Williams N J. A Performance Analysis of a Rocket Based Combined Cycle (RBCC) Propulsion System for Single-Stage-To-Orbit Vehicle Applications [D]. Knoxville, TN: University of Tennessee, 2010.
[15] Olds J, Bradford J. SCCREAM (simulated combined-cycle rocket engine analysis module): A conceptual RBCC engine design tool [C]//33rd Joint Propulsion Conference and Exhibit. Seattle WA, 1997.
[16] Zhao J, Zhou R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints [J]. Chinese Journal of Aeronautics, 2013, 26(6): 1544-1553.
[17] Phillips T H. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide [R]. Arlington, VA: Schafer Corporation for AFRL and AF-SPC, 2003.
[18] Sheu D, Chen Y M, Chang Y J, et al. Optimal glide for maximum range [C]//23rd Atmospheric Flight Mechanics Conference. Boston MA, 1998.
[19] Carter P H, Pines D J, Rudd L V. Approximate performance of periodic hypersonic cruise trajectories for global reach [J]. Journal of Aircraft, 1998, 35(6): 857-867.


相关文章:
No related articles found!

相关话题/优化 动力 系统 技术 计算