摘要:
| |||
文章导读 | |||
摘要该文重点讨论弯扭叶片设计方法在小展弦比的涡轴发动机涡轮叶片设计中的应用,旨在通过多方案的弯曲设计分析具有强二次流动的涡轮叶片的弯曲优化所能带来的气动性能改善和流场结构变化。给出了弯高固定而弯角不同的14个叶片弯曲设计方案。通过数值模拟计算分析了这些方案中总压比和流量,初步得出在该叶片设计中反弯设计要优于正弯和直叶片设计,且反弯15°方案为最优方案。根据密流沿叶高分布图分析了正弯、直和反弯叶片情况的下端区和中间区域的通流能力变化。结合叶片壁面极限流线图和静压分布,可发现反弯情况下造成的反向C型压力分布使得端区流动不但没有改善反而恶化,但是中间区域的低能流体却大大减少,从而总体损失得到减少。从出口截面的总压分布也可看出通道涡尺度变大,造成端区总压损失较大。 | |||
关键词 :涡轮,小展弦比,反弯叶片,通道涡,优化设计 | |||
Abstract:The curved blade design method was used in a vortex axis engine turbine with low aspect ratio to analyze the effect of the curved blade optimization on improving the aerodynamic performance and the flow field structure of the turbine blade with strong secondary flow. Design schemes were determined for 14 curved blades with fixed height and different corners, with the total pressure ratio and flow then obtained through numerical calculation. Preliminary results showed that the negative curved blade prototype is superior to the positive and straight blades, and that the scheme with inflection of 15° is the optimal solution. The changes of the flow ability in the bottom area and the middle area were given based on the density flow along the blade height. Combination of the blade wall limit flow and the static pressure distribution shows that the reverse C type pressure distribution caused by the negative curved blade deteriorates the end zone flow but with low energy fluid in the middle areas greatly reduced, so the overall losses are reduced. The total pressure distribution on the outlet section also shows that the total pressure loss in the end areas increases with increasing passage vortex scale. | |||
Key words:turbinelow aspect rationegative curved bladepassage vortexoptimization design | |||
收稿日期: 2013-10-09 出版日期: 2015-04-16 | |||
| |||
基金资助:国家自然科学基金青年科学基金项目(51206034) |
引用本文: |
韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108. Jun HAN, Fengbo WEN, Guangbo ZHAO. Curve optimization design of a turbine blade withlow aspect ratio. Journal of Tsinghua University(Science and Technology), 2014, 54(1): 102-108. |
链接本文: |
http://jst.tsinghuajournals.com/CN/或 http://jst.tsinghuajournals.com/CN/Y2014/V54/I1/102 |
图表:
弯叶片积迭线形式 | ||||||||||||||||||||||||
| ||||||||||||||||||||||||
不同弯角的弯叶片方案设计 | ||||||||||||||||||||||||
网格及流道形式 | ||||||||||||||||||||||||
实际气体性质 | ||||||||||||||||||||||||
进口参数沿叶高分布 | ||||||||||||||||||||||||
总体参数的变化趋势 | ||||||||||||||||||||||||
出口密流沿相对叶高分布 | ||||||||||||||||||||||||
正弯叶片静压等值线 | ||||||||||||||||||||||||
原型直叶片静压等值线 | ||||||||||||||||||||||||
反弯叶片静压等值线 | ||||||||||||||||||||||||
叶片出口总压云图 |
参考文献:
[1] | Wang Z, Lai S, Xu W. Aerodynamic calculation of turbine stator cascades with curvilinear leaned blades and some experimental results [C]// Proceedings of the 5th ISABE. Bangalore, 1981. |
[2] | WANG Zhongqi, HAN Wanjin, XU Wenyuan, et al.The blade curving effects in a turbine stator cascades with low aspect ratio [J]. Journal of Engineering Thermophysics, 1990, 11(3): 255-262. |
[3] | Wang Z, Han W, Xu W. An experimental investigation into controlling the secondary flow in turbine cascade with leaned blade and divergent outer wall [C]// Proceedings of IGTI. 87-IGCT-18. |
[4] | HAN Wanjin, CAI Daying, XU Wenyuan, et al.An experimental study of effect of endwalls’ and blade surfaces’ static pressure distribution on cascade aerodynamic characters[J]. Journal of Engineering Thermophysics, 1989, 10(3): 273-276. |
[5] | Wang Z, Xu W, Han W. An experiment investigation into the influence of the blade leaning on the secondary flow in annular cascade with small diameter-length ratio[R]. ASME 85-wam-1485. |
[6] | Breugelmans F AH, Carels Y. Influence of dihedral on the secondary flow in two dimensional compressor cascade[J]. Journal of Engineering for Gas Turbine and Power, 1984, 106(3): 578-584. |
[7] | Wang Z, Han W. The effectof blade curving on flow characteristics in rectangular turbine stator cascade with different incidence [R]. ASME 91-GT-60. |
[8] | Wang Z, Han W. An experimental investigation into the influence of diameter-blade height ratios on secondary flow loss in annular cascade with leaned blade [R]. ASME 87-GT-131. |
[9] | Han W, Tan Q, Wang Z. The control of secondary flow by combingthe convergent endwall with lean blade[J]. Journal of Engineering Thermophysics, 1990, 3(3): 310-318. |
[10] | Wang Z, Su J, Zhong J. The effect of the pressure distribution in a three dimensional flow field of a cascade on the type of curved blade [R]. ASME 94-GT-409. |
[11] | FENG Guotai, SU Jiexian, WANG Zhongqi, et al.The application of synthesized optimizing flow pattern to blade profiling and design[J].Journal of Engineering Thermophysics, 1991, 12(2): 156-159. |
[12] | WEN Fengbo, WANG Songtao, FENG Guotai, et al.Multilevel turbine aerodynamic optimization design system with coolant mixing[J].Journal of Engineering Thermophysics, 2008, 29(8): 1301-1306. |
[13] | FENG Guotai, GU Zhonghua, WEN Fengbo, et al.Aerodynamic design system & ideology of air-cooled turbine and its application to gas turbines[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1841-1848. |
[14] | LI Haibin, FENG Guotai, CHEN Fu. Flow field structure analysis in straight and bowed turbine vanes under cooling air mixture[J]. Journal of Propulsion Technology, 2003, 24(2): 125-129. |
[15] | LU Shaopeng, CHI Zhongran, WEN Fengbo, et al.Multi-objective optimization of turbine blades considering film cooling[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1036-1041. |
[16] | LU Shaopeng, CHI Zhongran, WANG Songtao, et al.Three-dimensional optimization of turbine blades considering film cooling[J]. Journal of Propulsion Technology, 2013, 34(5): 614-619. |
相关文章:
|