删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于噪点检测与邻域权值内插的彩色人脸图像去噪

清华大学 辅仁网/2017-07-07

基于噪点检测与邻域权值内插的彩色人脸图像去噪
谢旭东(),袁兆君,郭伟,张毅
Color face image denoising based on noisy pixel detection and neighborhood weight interpolation
Xudong XIE(),Zhaojun YUAN,Wei GUO,Yi ZHANG
Institute of System and Engineering, Department of Automation, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS)
摘要该文提出了一种基于彩色人脸图像训练库和Chebyshev不等式的有噪像素点检测算法,并利用像素间的相关性通过邻域权值内插算法,实现了彩色人脸图像的去噪。首先在L*a*b*颜色空间中进行主成分分析(principle component analysis, PCA)重建,然后定义了像素点向量距离差和像素点向量角度差,并给出有噪像素点判决准则,实现了有噪像素点与无噪像素点的区分,最后,利用像素点8邻域信息建立权值内插模型,结合PCA重建图像得到最终的去噪图像。在PIE标准人脸数据库中加入Gauss、 椒盐、块噪声对该算法性能进行测试,并与其他几种去噪算法进行比较。实验结果表明: 采用该算法去噪的彩色人脸图像具有更加清晰的边缘,保留了更多的有用信息,达到更高的峰值信噪比,且对多种噪声具有较好的去噪性能。

关键词 图像去噪,主成分分析,噪点检测,邻域权值内插
Abstract:This paper presents an approach for color face image denoising based on noisy pixel point detection derived from face image databases using the Chebyshev Inequality and neighborhood weight interpolation. The first step is principle component analysis (PCA) in the L*a*b* color space for the face reconstruction. Then, a pixel vector distance variance and a pixel vector angle variance are defined and a noisy pixel detection strategy is implemented. Finally, an eight-neighborhood weight interpolation model is used to get a PCA recovered image for the final denoised color face image. The algorithm performance is verified with Gaussian noise, pepper-and-salt noise and block noise added into the PIE standard color face database. The method is compared with several state-of-the-art image denoising methods. Tests based on the PIE database show that this approach is effective with different kinds of noise and achieves better performance with clearer edges, more useful information, better visual effects and higher PSNR.

Key wordsimage denoisingprinciple component analysisnoisy pixel detectionneighborhood weight interpolation
收稿日期: 2013-10-09 出版日期: 2015-04-17
基金资助:国家自然科学基金面上项目(60872085)
引用本文:
谢旭东,袁兆君,郭伟,张毅. 基于噪点检测与邻域权值内插的彩色人脸图像去噪[J]. 清华大学学报(自然科学版), 2014, 54(4): 536-539.
Xudong XIE,Zhaojun YUAN,Wei GUO,Yi ZHANG. Color face image denoising based on noisy pixel detection and neighborhood weight interpolation. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 536-539.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I4/536


图表:
Gauss噪声条件下不同算法去噪性能
椒盐噪声条件下不同算法去噪性能
块噪声条件下不同算法去噪性能
混合噪声条件下不同算法去噪性能
去噪图像


参考文献:
[1] Vijaykumar R, Jothibasu P. Denoised based adaptive median filter to remove blotches, scratches, streaks, stripes and impulse noise in images [C]// 17th International Conference on Image Processing. Tokyo, Japan: IEEE Press, 2010: 117-120.
[2] Dabov K, Foi A, Katkovnik V. Image denoising with block-matching and 3D filtering [J]. SPIE Electronic Imaging, 2006, 25(1) : 1081-1088.
[3] Aharon M, Elad M, Brukstein A. KSVD-an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 4311-4322.
[4] Wang S, Xia Y, Liu Q. Gabor feature based nonlocal means filter for textured image denoising[J]. Visual Communication and Image Representation, 2012, 23(1): 1008-1018.
[5] Yuan Z J, Xie X D, Lam K M. Facial image denoising based on RPCA recovery and noisy pixel detection [C]// International Conference on Acoustics, speech and Signal Processing. Vancouver, Canada: IEEE Press, 2013: 1109-1112.
[6] Chen L, Huang X. Face detectation on L*a*b* skin color model and morphology[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 12(1): 29-39.
[7] Reinhard E, Ashikhmin M, Gooch B. Color transfer between images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 21(5): 261-271.
[8] Turk M, Pentland A. Eigen-faces for recognition[J]. Journal of Cognition Neuroscience, 1991, 1(3): 71-86.
[9] Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 1(19): 1165-1177.
[10] Hyun P, Moon Y. Automatic denoising of face images using recursive PCA[J]. EURASIP Journal on Advances in Signal Processing, 2008, 29(12): 1742-1752.
[11] Liu K, Zhang K. Background modeling algorithm that uses Chebyshev inequaliy [C]// International Conference on Computational Intelligence for Modeling, Control and Automation. Vienna, Austria: IEEE Press, 2008: 838-843.
[12] Martinez A, Benavente R. The PIE face database [C]// Proceeding of the 10th International Conference on Analysis and Recognition. Barcelona, Spain: IEEE Press, 2009: 773-777.


相关文章:
No related articles found!

相关话题/图像 信息 空间 实验 邻域