删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

CMP多区压力定量解耦协同控制

清华大学 辅仁网/2017-07-07

CMP多区压力定量解耦协同控制
门延武, 张辉, 姜文雪, 周凯, 叶佩青
清华大学 制造工程研究所, 北京 100084
Quantitative decoupling cooperative control of CMP multi-zone pressure systems
MEN Yanwu, ZHANG Hui, JIANG Wenxue, ZHOU Kai, YE Peiqing
Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要化学机械抛光(CMP)过程中由于柔性弹性隔膜的存在使得各区之间压力相互耦合, 导致多区压力控制变得复杂化。该文提出了一种基于工作点线性化方法的离线辨识+定量耦合度分析+定量解耦控制的方案。利用工作点线性化方法, 离线获得多区压力系统的3输入3输出模型; 通过相对增益矩阵方法定量分析出各区之间的耦合程度; 采用前馈补偿解耦控制器实现各区压力之间的定量解耦控制。仿真以及实验结果表明:该方案在工程实践中能够实现各区压力的定量解耦控制, 使得系统在相同控制算法下获得更快的响应速度以及更小的超调量。
关键词 化学机械抛光(CMP),多输入多输出(MIMO),定量解耦,相对增益矩阵
Abstract:Chemical mechanical polishing (CMP) has a flexible elastic diaphragm that couples the mechanical deformations of the parts and complicates the pressure control. The coupling problem is solved here using offline identification based on working point linearization + quantitative coupling analysis + quantitative decoupled cooperative control. The working point linearization gives a multi-zones model. The relative gain array (RGA) method gives the degree of coupling. The feed-forward compensation decoupling controller provides the quantitative decoupling. Simulations and experiments show that this method decouples the pressure system in the multiple zones in engineering practice, so the system has less overshoot and faster response with the same control method.
Key wordschemical mechanical polishing (CMP)multiple-input multiple-output (MIMO)quantitative decouplingrelative gain array (RGA)
收稿日期: 2014-04-03 出版日期: 2015-09-18
ZTFLH:TH16
通讯作者:周凯,教授,E-mail:zhoukai@mail.tsinghua.edu.cnE-mail: zhoukai@mail.tsinghua.edu.cn
引用本文:
门延武, 张辉, 姜文雪, 周凯, 叶佩青. CMP多区压力定量解耦协同控制[J]. 清华大学学报(自然科学版), 2015, 55(7): 750-755.
MEN Yanwu, ZHANG Hui, JIANG Wenxue, ZHOU Kai, YE Peiqing. Quantitative decoupling cooperative control of CMP multi-zone pressure systems. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 750-755.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I7/750


图表:
图1 抛光头内部结构示意图
表1 仿真得到的解耦前后各区同时加压阶跃响应性能指标对比
图2 解耦后多区控制系统simulink仿真图
图3 解耦前后多区压力控制系统响应仿真曲线
表2 实验得到的解耦前后各区同时加压阶跃响应性能指标对比
图4 实验使用的CMP装备
图5 解耦前后多区压力控制系统响应实验结果曲线


参考文献:
[1] 郭阳宽, 王正林. 过程控制工程及仿真: 基于MATLAB/Simulink [M]. 北京: 电子工业出版社, 2009. (in Chinese)GUO Yangkuan, WANG Zhenglin. Process Control Engineering and Simulation: Based on MATLAB/Simulink [M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese)
[2] 刘文定, 王东林. MATLAB/Simulink与过程控制系统[M]. 北京: 机械工业出版社, 2012.LIU Wending, WANG Donglin. MATLAB/Simulink and Process Control System [M]. Beijing: Mechanical Industry Press, 2012. (in Chinese)
[3] 刘晨晖. 多变量过程控制系统解耦理论[M]. 北京: 水利电力出版社, 1984.LIU Chenhui. Decoupling Theory of Multivariable Process Control System [M]. Beijing: Hydraulic and Electric Power Press, 1984. (in Chinese)
[4] 王永初. 解耦控制系统[M]. 成都:四川科学技术出版社, 1985.WANG Yongchu. Decoupling Control System [M]. Chengdu: Sichuan Science and Technology Press, 1985.(in Chinese)
[5] Sato S M, Lopresti P V. On the generalization of state feedback decouling theory [J]. IEEE Transactions on Automatic Control, 1971, 16 (3):133-139.
[6] Falb P L, Wolovich W A. Decoupling in the design and synthesis of multivariable control systems [J]. IEEE Transactions on Automatic Control, 1967, 12 (6): 651-659.
[7] 程轶平. 基于CARMA模型多变量系统的j 步输出预估[J].控制与决策, 2006, 21 (9): 1050-1058.CHENG Yiping. CARMA-model-based j-step-ahead prediction for MIMO systems [J]. Control and Decision, 2006, 21 (9): 1050-1058.(in Chinese)
[8] 张晓婕. 多变量时变系统的CARMA模型近似解耦法[J]. 中国计量学院学报, 2004, 15 (4): 284-286.ZHANG Xiaojie. An approximate decoupling method applicable to multivariable time-changing systems with the CARMA model [J]. Journal of China Jiliang University, 2004, 15 (4): 284-286. (in Chinese)
[9] 赵志诚, 姚亮, 刘志远, 等. 双输入双输出时滞过程的IMC-PI控制方法[J]. 华中科技大学学报: 自然科学版, 2013, 41 (9): 53-56.ZHAO Zhicheng, YAO Liang, LIU Zhiyuan, et al. IMC-PI control method of two-input two-output time-delay process [J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2013, 41 (9): 53-56.(in Chinese)
[10] 周华伟, 温旭辉, 赵峰, 等. 基于内模的永磁同步电机滑模电流解耦控制[J]. 中国电机工程学报, 2012, 32 (15): 91-99.ZHOU Huawei, WEN Xuhui, ZHAO Feng, et al. Decoupled current control of permanent magnet synchronous motors drives with sliding mode control strategy based on internal model [J].Proceedings of the CSEE, 2012, 32 (15): 91-99.(in Chinese)
[11] 门延武, 路新春, 张辉, 等. 化学机械抛光多区压力系统解耦逆控制研究[J]. 华中科技大学学报: 自然科学版, 2013, 40 (2): 5-8.MEN Yanwu, LU Xinchun, ZHANG Hui, et al. Study on decoupling inverse control of CMP multi-zones pressure system [J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2013, 40 (2): 5-8. (in Chinese)
[12] 门延武, 张辉, 周凯, 等. 基于DRNN的CMP多区压力系统解耦自适应逆控制研究[J]. 清华大学学报: 自然科学版, 2012, 52 (11): 1622-1630.MEN Yanwu, ZHANG Hui, ZHOU Kai, et al. Decoupled adaptive inverse control of CMP multi-zone pressure systems based on DRNN [J].J Tsinghua Univ: Sci & Tech, 2012, 52 (11): 1622-1630.(in Chinese)
[13] MEN Yanwu, ZHANG Hui, ZHOU Kai, et al. CMP pressure control based on dual-modes controller [C]//The 2nd International Conference on Mechanic Automation and Control Engineering. Hohhot, China, 2011: 6378-6382.
[14] MEN Yanwu, LU Xinchun, ZHANG Hui, et al. Identification research on CMP multi-zones pressure system [J]. Advanced Materials Research, 2012, 605-607: 1074-1079.
[15] Bristol E H. On a new measure of interactions for multivariable process control [J]. IEEE Trans on Automatica Control, 1966, 11 (1): 133-134.
[16] 王全良. 基于DCS的多变量内模控制及其应用研究[D]. 北京: 北京化工大学, 2005.WANG Quanliang. The Application and Study of Multivariable Internal Model Control Based on DCS [D]. Beijing: Beijing University of Chemical Technology, 2005. (in Chinese)
[17] 叶凌箭, 宋执环. 多变量控制系统的一种变量配对方法[J]. 控制与决策, 2009, 24 (12): 1795-1800.YE Lingjian, SONG Zhihuan. Variable pairing method for multivariable control systems [J]. Control and Decision, 2009, 24 (12): 1795-1800. (in Chinese)
[18] 叶琼瑜. 化工过程多变量系统的PID控制研究[D]. 北京: 北京化工大学, 2008.YE Qiongyu. The Research of Multivariable System's PID Control on Chemical Process [D]. Beijing: Beijing University of Chemical Technology, 2008. (in Chinese)


相关文章:
[1]辛乐, 范玉顺. 考虑协作方的服务组合分析[J]. 清华大学学报(自然科学版), 2015, 55(5): 538-542,549.

相关话题/控制 系统 北京 过程 机械