超声振动系统非接触式高效电能传输的电路补偿 |
申昊, 冯平法, 张建富, 郁鼎文, 吴志军 |
清华大学 机械工程系, 精密超精密制造装备及控制北京市重点实验室, 北京 100084 |
Circuit compensation for efficient contactless power transmission in ultrasonic vibration systems |
SHEN Hao, FENG Pingfa, ZHANG Jianfu, YU Dingwen, WU Zhijun |
Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要为提高超声振动系统的非接触式电能传输效率, 对系统的电路补偿网络进行了研究和设计。结合压电振子的等效电路和松耦合系统的互感模型, 阐明了电路补偿的理论依据, 提出各自独立地对原、副边回路进行补偿, 以消除互感的影响。结合理论和仿真计算的结果, 设计并建立了超声振动系统非接触式电能传输的电路补偿网络。对系统的输出振幅进行实验测量, 结果显示: 补偿后的振幅得到了大幅提升, 且气隙值越大、电功率越大, 补偿效果越显著。对于超声振动系统的非接触式电能传输, 所建立的补偿方法能够显著地减小无功损耗, 提高能量传输效率, 补偿网络设计合理、有效。 | |||
关键词 :超声振动系统,非接触式电能传输,互感模型,等效电路,电路补偿,超声振幅 | |||
Abstract:Circuit compensation was used to improve the contactless power transmission efficiency in ultrasonic vibration systems. The circuit compensation model was based on an equivalent circuit model of the piezoelectric vibrator and a mutual inductance model of the loosely coupled system. The primary and secondary circuits were independently compensated to eliminate the effects of the mutual inductance. A system was built with test showing that the amplitudes were significantly improved by the compensation, especially for large air gaps and large power loads. This study indicates that circuit compensation effectively reduces the reactive power losses and improves the power transmission efficiency of the contactless power transmission in ultrasonic vibration systems. | |||
Key words:ultrasonic vibration systemcontactless power transmissionmutual inductance modelequivalent circuitcircuit compensationultrasonic amplitude | |||
收稿日期: 2014-09-05 出版日期: 2015-09-18 | |||
| |||
通讯作者:冯平法,教授,E-mail:fengpf@mail.tsinghua.edu.cnE-mail: fengpf@mail.tsinghua.edu.cn |
引用本文: |
申昊, 冯平法, 张建富, 郁鼎文, 吴志军. 超声振动系统非接触式高效电能传输的电路补偿[J]. 清华大学学报(自然科学版), 2015, 55(7): 728-733. SHEN Hao, FENG Pingfa, ZHANG Jianfu, YU Dingwen, WU Zhijun. Circuit compensation for efficient contactless power transmission in ultrasonic vibration systems. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 728-733. |
链接本文: |
http://jst.tsinghuajournals.com/CN/或 http://jst.tsinghuajournals.com/CN/Y2015/V55/I7/728 |
图表:
图1 非接触式超声振动系统结构示意图 |
图2 压电振子等效电路[13] |
图3 非接触式超声振动系统互感模型 |
图4 原、副边磁芯和线圈 |
图5 磁通密度分布云图(气隙3mm) |
表1 不同气隙值下的互感电路参数 |
图6 原边串联、副边串联补偿网络 |
图7 含有电路补偿网络的超声振动系统 |
图8 位移数据频谱图 |
图9 位移数据散点图及正弦拟合曲线 |
图10 振幅气隙曲线 |
图11 提升比例气隙曲线 |
参考文献:
[1] Thoe T B, Aspinwall D K, Wise M L H. Review on ultrasonic machining [J]. International Journal of Machine Tools and Manufacture, 1998, 38(4): 239-255. [2] 冯平法, 郑书友, 张京京. 功率超声加工关键技术的研究进展 [J]. 制造技术与机床, 2009 (5): 57-62.FENG Pingfa, ZHENG Shuyou, ZHANG Jingjing. Development of the study on key techniques of power ultrasonic machining [J]. Manufacturing Technology & Machine Tool, 2009 (5): 57-62. (in Chinese) [3] 郑书友, 冯平法, 徐西鹏. 旋转超声加工技术研究进展 [J]. 清华大学学报: 自然科学版, 2009, 49(11): 1799-1804.ZHENG Shuyou, FENG Pingfa, XU Xipeng. Development trends of rotary ultrasonic machining technology [J]. J Tsinghua Univ: Sci and Tech, 2009, 49(11): 1799-1804. (in Chinese) [4] 倪皓. 旋转超声加工及其关键技术的研究 [D]. 天津: 天津大学, 2009.NI Hao. Study on Rotary Ultrasonic Machining and Key Technique [D]. Tianjin: Tianjin University, 2009. (in Chinese) [5] 郑书友. 旋转超声加工机床的研制及实验研究 [D]. 厦门: 华侨大学, 2008.ZHENG Shuyou. Development of a Rotary Ultrasonic Machine and Experimental Study of Machining on the Machine [D]. Xiamen: Huaqiao University, 2008. (in Chinese) [6] WANG Chwei-Sen, Stielau O H, Covic G A. Load models and their application in the design of loosely coupled inductive power transfer systems [C]//Power System Technology. Proceedings of PowerCon 2000 International Conference. Perth: IEEE Press, 2000: 1053-1058. [7] WANG Chwei-Sen, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems [J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148-157. [8] Polk E M. Impedance Matching Circuit for Piezoelectric Transducers [D]. Cambridge, MA: Massachusetts Institute of Technology, 1978. [9] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社, 2004.LIN Shuyu. Theory and Design of Ultrasonic Transducers [M]. Beijing: Science Press, 2004. (in Chinese) [10] 武剑, 董惠娟, 张松柏, 等. 压电超声换能器初级串联匹配新方法 [J]. 吉林大学学报: 工学版, 2009, 39(6): 1641-1645. WU Jian, DONG Huijuan, ZHANG Songbai, et al. Novel primary series matching scheme for piezoelectric ultrasonic transducer [J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(6): 1641-1645. (in Chinese) [11] 庞明鑫. 非接触式超声电能传递装置的设计理论及实验研究 [D]. 太原: 太原理工大学, 2010.PANG Mingxin. Design Theory and Experimental Study of Non-Contact Ultrasonic Power Transfer Device [D]. Taiyuan: Taiyuan University of Technology, 2010. (in Chinese) [12] 马付建. 超声辅助加工系统研发及其在复合材料加工中的应用 [D]. 大连: 大连理工大学, 2013.MA Fujian. Development of Ultrasonic Assisted Machining System and Its Application in Machining of Composite [D]. Dalian: Dalian University of Technology, 2013. (in Chinese) [13] 陈桂生. 超声换能器设计 [M]. 北京: 海洋出版社, 1984.CHEN Guisheng. Design of Ultrasonic Transducers [M]. Beijing: China Ocean Press, 1984. (in Chinese) [14] 潘双来, 邢丽文, 龚余才. 电路理论基础 [M]. 北京: 清华大学出版社, 2007.PAN Shuanglai, XING Liwen, GONG Yucai. Fundamental of Circuit Theory [M]. Beijing: Tsinghua University Press, 2007. (in Chinese) [15] 贾瑞皋, 薛庆忠. 电磁学 [M]. 北京: 高等教育出版社, 2011. JIA Ruigao, XUE Qingzhong. Electromagnetism [M]. Beijing: Higher Education Press, 2011. (in Chinese) |
相关文章:
|