删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于BP神经网络的微博转发量的预测

清华大学 辅仁网/2017-07-07

基于BP神经网络的微博转发量的预测
邓青1, 马晔风1, 刘艺2, 张辉1
1. 清华大学 工程物理系, 公共安全研究中心, 北京 100084;
2. 中国人民公安大学 治安学院, 北京 100038
Prediction of retweet counts by a back propagation neural network
DENG Qing1, MA Yefeng1, LIU Yi2, ZHANG Hui1
1. Center for Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Pubic Order School, People's Public Security University of China, Beijing 100038, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要微博已经成为人们传播和获取信息的重要途径。突发事件相关微博的传播范围对事件的影响起着重要的作用,微博转发是扩大微博传播范围的一种重要方式。该文以城管与民众冲突事件(俗称“城管事件”)为例,将BP(back propagation)神经网络应用到该类事件相关微博的转发行为研究中,以实现该类突发事件下微博转发行为的影响因素分析和转发量的预测。该文先从发帖人和微博内容2个角度分析了突发事件下微博转发行为的影响因素, 结果表明: 1) 微博发帖人的活跃度、微博涉及主题标签、包含视频等可视化信息、提及其他用户及微博的发表时间段均对该微博的转发量有较大影响; 2) 与发帖人相比, 微博内容对其转发量的影响更大。在影响因素分析的基础上, 该文通过将预测问题转化为模式分类问题, 基于BP(back propagation)神经网络对突发事件下的微博转发量进行了预测, 并通过改变样本数对预测结果的稳定性进行了测试, 得到了有一定参考价值的预测结果。
关键词 微博,转发,BP(back propagation)神经网络,预测,影响因素,权重分析,应急响应
Abstract:Twitter has become a major platform for expressing and gathering information to change people's opinions and lives. Retweets are a key mechanism for information diffusion. The retweet mechanism can be a useful method to guide public opinion and contribute to emergency responses. This paper considers a case study of the conflicts between urban management officials (known as Chengguan in China) and the public. This study focused on factor analysis and prediction of a tweet's popularity based on a back propagation (BP) neural network during a crisis. The weighted analysis of various factors from the perspectives of the posters and the content of the microblog messages shows how some factors, including the user's activity, hashtag, visual information, mentioning others and posting time, influences a message's popularity. The results show that followers are more attracted by a tweet's content rather than its poster. The prediction problem is changed into a pattern classification problem to predict the retweet count using a back propagation (BP) neural network. The stability of the results was tested by changing the number of samples.
Key wordsTwitterretweetsback propagation (BP) neural networkpredictionfactorsweighted analysisemergency responses
收稿日期: 2014-09-04 出版日期: 2016-01-12
ZTFLH:G206.3
通讯作者:张辉,教授,E-mail:zhhui@mail.tsinghua.edu.cnE-mail: zhhui@mail.tsinghua.edu.cn
引用本文:
邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
DENG Qing, MA Yefeng, LIU Yi, ZHANG Hui. Prediction of retweet counts by a back propagation neural network. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1342-1347.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.24.012 http://jst.tsinghuajournals.com/CN/Y2015/V55/I12/1342


图表:
表1 影响因素及因变量信息表
表2 经过处理后的微博数据的分类
图1 BP神经网络结构图
图2 各指标的权重分布
表3 不同样本数的预测结果
表4 不同样本数实验的平均值


参考文献:
[1] GUAN Wanqiu, GAO Haoyu, YANG Mingmin. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events [J]. Physica A, 2014, 395: 340-351.
[2] Rudat A, Buder J, Hesse F W. Audience design in Twitter: Retweeting behavior between informational value and followers' interests [J]. Computers in Human Behavior, 2014, 35: 132-139.
[3] Morchid M, Dufour R, Bousquet P M, et al. Feature selection using principal component analysis for massive retweet detection [J]. Pattern Recognition Letters, 2014, 49: 33-39.
[4] 吴凯, 季新生, 刘彩霞. 基于行为预测的微博网络信息传播建模 [J]. 计算机应用研究, 2013, 30(6): 1809-1813. WU Kai, JI Xinsheng, LIU Caixia. Modeling information diffusion based on behavior predicting in microblog [J]. Application Research of Computers, 2013, 30(6): 1809-1813. (in Chinese)
[5] LIANG Bin, LIU Yiqun, ZHANG Min, et al. Searching for people to follow in social networks [J]. Expert Systems with Applications, 2014, 41(16): 7455-7465.
[6] Armentano M G, Godoy D, Amandi A A. Followee recommendation based on text analysis of micro-blogging activity [J]. Information Systems, 2013, 38(8): 1116-1127.
[7] PetroviS, Osborne M, Lavrenko V. RT to Win! Predicting Message Propagation in Twitter [C] // Fifth International AAAI Conference on Weblogs and Social Media (ICWSM). Barcelona, Spain: Association for the Advancement of Artificial Intelligence, 2011.
[8] 张旸, 路荣, 杨青. 微博客中转发行为的预测研究 [J]. 中文信息学报, 2012, 26(4): 109-115. ZHANG Yang, LU Rong, YANG Qing. Prediction retweeting in Microblogs [J]. Journal of Chinese Information Process, 2012, 26(4): 109-115. (in Chinese)
[9] Suh B, Hong L, Pirolli P, et al. Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network [C] // 2010 IEEE Second International Conference on Social Computing (SocialCom). Minneapolis, USA: IEEE, 2010.
[10] 李英乐, 于洪涛, 刘力雄. 基于SVM的微博转发规模预测方法 [J]. 计算机应用研究, 2013: 30(9), 2594-2597. LI Yingle, YU Hongtao, LIU lixiong. Predict algorithm of micro-blog retweet scale based on SVM [J]. Application Research of Computers, 2013, 30(9): 2594-2597. (in Chinese)
[11] ZHANG Yiwen, QI Jiayin, FANG Binxing, et al. The indicator system based on BP neural network model for net-mediated public opinion on unexpected emergency [J]. China Communications, 2011, 8(2): 42-51.
[12] 何长虹, 黄全义, 申世飞, 等. 基于BP神经网络的森林可燃物负荷量估测 [J]. 清华大学学报: 自然科学版, 2011, 51(2): 230-233. HE Changhong, HUANG Quanyi, SHEN Shifei, et al. Forest fuel loading estimates based on a back propagation neutral network [J]. Journal of Tsinghua University: Science and Technology, 2011, 51(2): 230-233. (in Chinese)
[13] 杨淑娥, 黄礼. 基于BP神经网络的上市公司财务预警模型 [J]. 系统工程理论与实践, 2005, 1(1): 12-18. YANG Shu'e, HUANG Li. Financial crisis warning model based on BP neural network [J]. System Engineering-Theory & Practice, 2005, 1(1): 12-18. (in Chinese)
[14] 张天云, 陈奎, 魏伟, 等. BP神经网络法确定工程材料评价指标的权重 [J]. 材料导报, 2012, 26(2): 159-163. ZHANG Tianyun, CHEN Kui, WEI Wei, et al. The determination of index weights for comprehensive evaluation engineering materials with BP neural network [J]. Materials Review, 2012, 26(2): 159-163. (in Chinese)
[15] 刘敏, 孙树栋. 基于ANN的电子商务水平测度指标权重的确定方法 [J]. 电子商务, 2006, 4(88): 136-140. LIU Min, SUN Shudong. Research on method of computing indicator weight for E-commerce development level estimaion based on ANN [J]. Journal of E-commerce, 2006, 4(88): 136-140. (in Chinese)
[16] WANG Zhiliang, LI Yongchi, Shen R F. Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model [J]. Engineering Geology, 2007, 91(2): 168-177.
[17] REN Chao, AN Ning, WANG Jianzhou, et al. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting [J]. Knowledge-Based Systems, 2014, 56: 226-239.


相关文章:
[1]黄小莉, 石竑松, 张翀斌, 杨永生, 朱克雷. 对一类组合线性同余发生器的不可预测性研究[J]. 清华大学学报(自然科学版), 2016, 56(1): 22-27.
[2]赵丽丽, 常世彦, 许洁, 张希良. 中国生物液体燃料技术经济分析及预测[J]. 清华大学学报(自然科学版), 2015, 55(9): 1023-1035.
[3]周沧琦, 赵千川, 卢文博. 基于兴趣变化的微博用户转发行为建模[J]. 清华大学学报(自然科学版), 2015, 55(11): 1163-1170.
[4]柳长春, 都东, 潘际銮. 基于小偏差模型预测的车道保持辅助控制[J]. 清华大学学报(自然科学版), 2015, 55(10): 1087-1092.
[5]罗剑,罗禹贡,褚文博,张书玮,李克强. 分布式电动车制/驱动力协调行驶稳定性控制[J]. 清华大学学报(自然科学版), 2014, 54(6): 729-733.
[6]张晶, 黄京华, 黎波, 严威. 新浪企业微博口碑传播的实证研究[J]. 清华大学学报(自然科学版), 2014, 54(5): 649-654.
[7]冯磊,王宏力,周志杰,司小胜,邹红星. 基于状态空间的惯性测量组合剩余寿命在线预测[J]. 清华大学学报(自然科学版), 2014, 54(4): 508-514.
[8]孙轶轩, 邵春福, 计寻, 朱亮. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54(3): 348-353.
[9]张超, 刘奕, 张辉, 黄弘. 基于支持向量机的城市燃气日负荷预测方法研究[J]. 清华大学学报(自然科学版), 2014, 54(3): 320-325.

相关话题/信息 传播 材料 北京 控制