删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于小偏差模型预测的车道保持辅助控制

清华大学 辅仁网/2017-07-07

基于小偏差模型预测的车道保持辅助控制
柳长春, 都东, 潘际銮
清华大学 机械工程系, 北京 100084
Predictive control for lane control systems using a small deviation model
LIU Changchun, DU Dong, PAN Jiluan
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要车道保持辅助系统需要在保证安全性的同时适应驾驶员习惯, 避免不必要的干预。该文通过在线构建人-车系统的小偏差模型, 基于模型预测控制理论, 设计了车道保持辅助控制策略。控制器通过在线求解二次规划问题, 获得矫正转向角, 帮助驾驶员避免无意的车道偏离。根据车辆当前状态, 计算名义预测轨迹。通过将非线性人-车模型围绕名义轨迹逐次线性化, 在线获取人-车系统小偏差模型。通过对系统安全性和驾驶员适应性指标的量化设计, 得到相应的目标函数和I/O约束, 建立了滚动时域优化问题。仿真实验演示了该控制器探测车道偏离危险和转向矫正的过程。真实场景下的实车实验表明: 该系统具有避免车道偏离、适应驾驶员习惯、避免不必要干预的能力。
关键词 车道保持,模型预测控制,小偏差模型,驾驶员辅助系统
Abstract:Lane control systems automatically keep a vehicle in its lane to improve driving safety. Such systems need to adapt to the driver's characteristics and should reduce unnecessary intervention. A small deviation model of the human-vehicle system is formulated for on-line prediction of the future vehicle trajectory with an assistance control strategy based on model predictive control (MPC). A corrective steering angle is computed by solving a quadratic programming problem. The nominal trajectory is predicted using the current vehicle information. Then, a deviation model is obtained by successively linearizing the human-vehicle system around the nominal prediction trajectory. A cost function and I/O constraints are designed according to a performance index. Simulations and real world tests show that this approach is able to avoid unintended lane departures while adapting to the driver's driving patterns and avoiding unnecessary intervention.
Key wordslane keepingmodel predictive controlsmall deviation modeldriver assistance system
收稿日期: 2014-12-09 出版日期: 2015-11-16
ZTFLH:U461.91
基金资助:国家留学基金委赞助项目(201206210103)
通讯作者:都东,教授,E-mail:dudong@tsinghua.edu.cnE-mail: dudong@tsinghua.edu.cn
作者简介: 柳长春(1988-),男(汉),河南,博士研究生。
引用本文:
柳长春, 都东, 潘际銮. 基于小偏差模型预测的车道保持辅助控制[J]. 清华大学学报(自然科学版), 2015, 55(10): 1087-1092.
LIU Changchun, DU Dong, PAN Jiluan. Predictive control for lane control systems using a small deviation model. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1087-1092.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.011 http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1087


图表:
图1 系统模型示意图
表1 控制器参数
图2 注意力分散的驾驶员接近弯道仿真结果
图3 注意力分散的驾驶员通过弯道的测试结果
图4 驾驶员无意识偏离直线车道的测试结果


参考文献:
[1] Mellinghoff U, Breitling T, Schöneburg R, et al. The Mercedes-Benz experimental safety vehicle [C]// International Technique Conference on Enhanced Safety Vehicles. Stuttgart, Germany, 2009: 1-11.
[2] Jansson J, Gustafsson F. A framework and automotive application of collision avoidance decision making [J]. Automatica, 2008, 44(9): 2347-2351.
[3] Liu J, Su Y, Ko M, et al. Development of a vision-based driver assistance system with lane departure warning and forward collision warning functions [C]// IEEE Digital Image Computing: Techniques and Applications. Canberra, Australia, 2008: 480-485.
[4] Vasudevan R, Shi V, Gao Y, et al. Safe semi-autonomous control with enhanced driver modeling [C]// American Control Conference. Montréal, Canada, 2012: 2896-2903.
[5] Mammar S, Glaser S, Netto M. Time to line crossing for lane departure avoidance: A theoretical study and an experimental setting [J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(2): 226-241.
[6] Falcone P, Tseng H E, Borrelli F, et al. MPC-based yaw and lateral stabilisation via active front steering and braking [J]. Vehicle System Dynamics, 2008, 46(S1): 611-628.
[7] Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehicles [J]. IEEE Transactions on Control Systems Technology, 2007, 15(3): 566-580.
[8] Li S, Li K, Rajamani R, et al. Model predictive multi- objective vehicular adaptive cruise control [J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 556-566.
[9] Gray A, Ali M, Gao Y, et al. A unified approach to threat assessment and control for automotive active safety [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1490-1499.
[10] Gray A, Ali M, Gao Y, et al. Integrated threat assessment and control design for roadway departure avoidance [C]// Intelligent Transportation Systems (ITSC). Anchorage, AK, USA, 2012: 1714-1719.
[11] Liu C, Andrew G, Lee C, et al. Nonlinear stochastic predictive control with unscented transformation for semi-autonomous vehicles [C]// American Control Conference (ACC). Portland, OR, USA, 2014: 5574-5579.
[12] Liu C, Zheng J, Pan J. Robust semi-autonomous vehicle control for roadway departure and obstacle avoidance [C]// IEEE 12th International Conference on Systems, Automation and Control. Gwangju, Korea, 2013: 1024-1028.
[13] Anderson S J, Peters S C, Pilutti T E, et al. An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios [J]. International Journal of Vehicle Autonomous Systems, 2010, 8(2): 190-216.
[14] Gray A, Gao Y, Hedrick J K, et al. Robust predictive control for semi-autonomous vehicles with an uncertain driver model [C]// Intelligent Vehicles Symposium (IV). Gold Coast City, Australia, 2013: 208-213.
[15] Gray A, Gao Y, Hedrick J K, et al. Stochastic predictive control for semi-autonomous vehicles with an uncertain driver model [C]// Intelligent Transportation Systems Conference. Hague, Netherlands, 2013: 2329-2334.
[16] Pacejka H. Tyre and Vehicle Dynamics [M]. Amsterdam, Netherlands: Elsevier, 2005.


相关文章:
[1]罗剑,罗禹贡,褚文博,张书玮,李克强. 分布式电动车制/驱动力协调行驶稳定性控制[J]. 清华大学学报(自然科学版), 2014, 54(6): 729-733.

相关话题/控制 系统 实验 测试 设计